These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25938988)

  • 61. Self-Chargeable Flexible Solid-State Supercapacitors for Wearable Electronics.
    Zhou D; Wang F; Zhao X; Yang J; Lu H; Lin LY; Fan LZ
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44883-44891. PubMed ID: 32924429
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication and Performance of Self-Supported Flexible Cellulose Nanofibrils/Reduced Graphene Oxide Supercapacitor Electrode Materials.
    He W; Wu B; Lu M; Li Z; Qiang H
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560428
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics.
    Keum K; Kim JW; Hong SY; Son JG; Lee SS; Ha JS
    Adv Mater; 2020 Dec; 32(51):e2002180. PubMed ID: 32930437
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks.
    Purkait T; Singh G; Kumar D; Singh M; Dey RS
    Sci Rep; 2018 Jan; 8(1):640. PubMed ID: 29330476
    [TBL] [Abstract][Full Text] [Related]  

  • 66. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors.
    Dong B; Zhou H; Liang J; Zhang L; Gao G; Ding S
    Nanotechnology; 2014 Oct; 25(43):435403. PubMed ID: 25299341
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials.
    Kuila T; Mishra AK; Khanra P; Kim NH; Lee JH
    Nanoscale; 2013 Jan; 5(1):52-71. PubMed ID: 23179249
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications.
    Zhao X; Hayner CM; Kung MC; Kung HH
    ACS Nano; 2011 Nov; 5(11):8739-49. PubMed ID: 21980979
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Imperceptible Supercapacitors with High Area-Specific Capacitance.
    Ge J; Zhu M; Eisner E; Yin Y; Dong H; Karnaushenko DD; Karnaushenko D; Zhu F; Ma L; Schmidt OG
    Small; 2021 Jun; 17(24):e2101704. PubMed ID: 33977641
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors.
    Qin K; Kang J; Li J; Shi C; Li Y; Qiao Z; Zhao N
    ACS Nano; 2015 Jan; 9(1):481-7. PubMed ID: 25567451
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-performance, stretchable, wire-shaped supercapacitors.
    Chen T; Hao R; Peng H; Dai L
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):618-22. PubMed ID: 25404509
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte.
    Zhao C; Wang C; Yue Z; Shu K; Wallace GG
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9008-14. PubMed ID: 23947753
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
    Cui Y; Cheng QY; Wu H; Wei Z; Han BH
    Nanoscale; 2013 Sep; 5(18):8367-74. PubMed ID: 23793833
    [TBL] [Abstract][Full Text] [Related]  

  • 76. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors.
    Liu B; Liu B; Wang Q; Wang X; Xiang Q; Chen D; Shen G
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10011-7. PubMed ID: 24050440
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers.
    Wang C; Hu K; Li W; Wang H; Li H; Zou Y; Zhao C; Li Z; Yu M; Tan P; Li Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34302-34310. PubMed ID: 30209940
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.
    Wang W; Guo S; Lee I; Ahmed K; Zhong J; Favors Z; Zaera F; Ozkan M; Ozkan CS
    Sci Rep; 2014 Mar; 4():4452. PubMed ID: 24663242
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.