BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25939084)

  • 1. Robotic production of cancer cell spheroids with an aqueous two-phase system for drug testing.
    Ham SL; Atefi E; Fyffe D; Tavana H
    J Vis Exp; 2015 Apr; (98):e52754. PubMed ID: 25939084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic printing and drug testing of 384-well tumor spheroids.
    Ham SL; Thakuri PS; Tavana H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single and Combination Drug Screening with Aqueous Biphasic Tumor Spheroids.
    Shahi Thakuri P; Tavana H
    SLAS Discov; 2017 Jun; 22(5):507-515. PubMed ID: 28324660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microprinted tumor spheroids enable anti-cancer drug screening.
    Thakuri PS; Ham SL; Tavana H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4177-4180. PubMed ID: 28269203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture.
    Lemmo S; Atefi E; Luker GD; Tavana H
    Cell Mol Bioeng; 2014 Sep; 7(3):344-354. PubMed ID: 25221631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient.
    Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M
    Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric Analysis of Oncology Drug Screening with Aqueous Two-Phase Tumor Spheroids.
    Shahi Thakuri P; Ham SL; Luker GD; Tavana H
    Mol Pharm; 2016 Nov; 13(11):3724-3735. PubMed ID: 27653969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.
    Chen W; Wong C; Vosburgh E; Levine AJ; Foran DJ; Xu EY
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues.
    Drewitz M; Helbling M; Fried N; Bieri M; Moritz W; Lichtenberg J; Kelm JM
    Biotechnol J; 2011 Dec; 6(12):1488-96. PubMed ID: 22102438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent and Gas-Permeable Liquid Marbles for Culturing and Drug Sensitivity Test of Tumor Spheroids.
    Li H; Liu P; Kaur G; Yao X; Yang M
    Adv Healthc Mater; 2017 Jul; 6(13):. PubMed ID: 28426154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network.
    Kim C; Bang JH; Kim YE; Lee SH; Kang JY
    Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device.
    LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB
    Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening.
    Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P
    Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics.
    Solomon MA; Lemera J; D'Souza GG
    J Liposome Res; 2016 Sep; 26(3):246-60. PubMed ID: 26780923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of Uniform Spheroid Formation in 384-Well Plates: The Effect of Medium Evaporation.
    Das V; Fürst T; Gurská S; Džubák P; Hajdúch M
    J Biomol Screen; 2016 Oct; 21(9):923-30. PubMed ID: 27226477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.
    Raghavan S; Ward MR; Rowley KR; Wold RM; Takayama S; Buckanovich RJ; Mehta G
    Gynecol Oncol; 2015 Jul; 138(1):181-9. PubMed ID: 25913133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.