BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25939084)

  • 41. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge?
    Friedrich J; Ebner R; Kunz-Schughart LA
    Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reprint of: A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.
    Shah UK; Mallia JO; Singh N; Chapman KE; Doak SH; Jenkins GJS
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Oct; 834():35-41. PubMed ID: 30173862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Influence of Antitumor Unsymmetrical Bisacridines on 3D Cancer Spheroids Growth and Viability.
    Kulesza J; Pawłowska M; Augustin E
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684841
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures.
    Sirenko O; Mitlo T; Hesley J; Luke S; Owens W; Cromwell EF
    Assay Drug Dev Technol; 2015 Sep; 13(7):402-14. PubMed ID: 26317884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gradient-sized control of tumor spheroids on a single chip.
    Fang G; Lu H; Law A; Gallego-Ortega D; Jin D; Lin G
    Lab Chip; 2019 Dec; 19(24):4093-4103. PubMed ID: 31712797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
    Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC
    Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiplexed Viability Assays for High-Throughput Screening of Spheroids of Multiple Sizes.
    Marimuthu M; Gervais T
    Methods Mol Biol; 2023; 2644():435-447. PubMed ID: 37142939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL
    SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening.
    Baillargeon P; Shumate J; Hou S; Fernandez-Vega V; Marques N; Souza G; Seldin J; Spicer TP; Scampavia L
    SLAS Technol; 2019 Aug; 24(4):420-428. PubMed ID: 31225974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.
    Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P
    PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system.
    Karlsson H; Fryknäs M; Larsson R; Nygren P
    Exp Cell Res; 2012 Aug; 318(13):1577-85. PubMed ID: 22487097
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of Cancer Cell Invasion and Anti-metastatic Drug Screening Using Hydrogel Micro-chamber Array (HMCA)-based Plates.
    Ravid-Hermesh O; Zurgil N; Shafran Y; Afrimzon E; Sobolev M; Hakuk Y; Bar-On Eizig Z; Deutsch M
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30417872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions.
    Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P
    Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids.
    Herrmann R; Fayad W; Schwarz S; Berndtsson M; Linder S
    J Biomol Screen; 2008 Jan; 13(1):1-8. PubMed ID: 18040052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model.
    Yeon SE; No da Y; Lee SH; Nam SW; Oh IH; Lee J; Kuh HJ
    PLoS One; 2013; 8(9):e73345. PubMed ID: 24039920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations.
    Lee DW; Kim JE; Lee GH; Son A; Park HC; Oh D; Jo K; Choi C
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing.
    Voissiere A; Jouberton E; Maubert E; Degoul F; Peyrode C; Chezal JM; Miot-Noirault É
    PLoS One; 2017; 12(7):e0181340. PubMed ID: 28704566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.
    Hsiao AY; Tung YC; Qu X; Patel LR; Pienta KJ; Takayama S
    Biotechnol Bioeng; 2012 May; 109(5):1293-304. PubMed ID: 22161651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protocol to generate scaffold-free, multicomponent 3D melanoma spheroid models for preclinical drug testing.
    Angeli C; Wroblewska JP; Klein E; Margue C; Kreis S
    STAR Protoc; 2024 Jun; 5(2):103058. PubMed ID: 38748881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.