These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 25939652)

  • 41. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: contribution of the basal stem compared to the root.
    Douchiche O; Chaïbi W; Morvan C
    J Hazard Mater; 2012 Oct; 235-236():101-7. PubMed ID: 22858130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cadmium toxicity in maize seedlings: changes in antioxidant enzyme activities and root growth.
    Malekzadeh P; Khara J; Farshian S; Jamal-Abad AK; Rahmatzadeh S
    Pak J Biol Sci; 2007 Jan; 10(1):127-31. PubMed ID: 19069998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Dynamics of Cd adsorption on rice seedlings root surface with iron coating and Cd uptake by plant].
    Liu HJ; Hu XB; Zhang JL; Zhang FS
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):425-30. PubMed ID: 17450751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants.
    Page V; Feller U
    Ann Bot; 2005 Sep; 96(3):425-34. PubMed ID: 15965269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium.
    Varun M; D'Souza R; Pratas J; Paul MS
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):45-9. PubMed ID: 21556781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effects of intercropping on cadmium uptake by maize and tomato].
    Wan J; Bao H; Peng W; An L; Jiang Q; Yang J; Zhu C
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):518-528. PubMed ID: 32237545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Editorial: Effect of root anatomy and apoplastic barrier development on cadmium uptake in rice.
    Hoy KS; Uppal JS; Le XC
    J Environ Sci (China); 2019 May; 79():361-363. PubMed ID: 30784460
    [No Abstract]   [Full Text] [Related]  

  • 49. Characteristics of cadmium translocation and isotope fractionation in Ricinus communis seedlings: Effects from split/cut-root and limited nutrients.
    Wei R; Guo Q; Zhang Q; Ma J
    Sci Total Environ; 2022 May; 819():152493. PubMed ID: 35038515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silicate reduces cadmium uptake into cells of wheat.
    Greger M; Kabir AH; Landberg T; Maity PJ; Lindberg S
    Environ Pollut; 2016 Apr; 211():90-7. PubMed ID: 26745394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings.
    Li LZ; Tu C; Peijnenburg WJGM; Luo YM
    Environ Pollut; 2017 Feb; 221():351-358. PubMed ID: 28012673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation in rice by promoting the formation of root apoplastic barriers.
    Xiao B; Huang J; Guo J; Lu X; Zhu L; Wang J; Zhou C
    J Hazard Mater; 2022 Oct; 439():129619. PubMed ID: 35868081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.
    Wang P; Liu C; Yao Y; Wang C; Wang T; Yuan Y; Hou J
    Water Sci Technol; 2017 May; 75(9-10):2171-2178. PubMed ID: 28498130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cadmium-induced sulfate uptake in maize roots.
    Nocito FF; Pirovano L; Cocucci M; Sacchi GA
    Plant Physiol; 2002 Aug; 129(4):1872-9. PubMed ID: 12177501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.
    Sangthong C; Setkit K; Prapagdee B
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):756-64. PubMed ID: 26336850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silicon distribution in leaves and roots of rice and maize in response to cadmium and zinc toxicity and the associated histological variations.
    Janeeshma E; Puthur JT; Ahmad P
    Physiol Plant; 2021 Sep; 173(1):460-471. PubMed ID: 33305357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L.
    Borišev M; Pajević S; Nikolić N; Orlović S; Župunski M; Pilipović A; Kebert M
    Int J Phytoremediation; 2016; 18(2):164-70. PubMed ID: 26247775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.