These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25939668)

  • 61. Modeling of stimulated emission based luminescent solar concentrators.
    Kaysir MR; Fleming S; Argyros A
    Opt Express; 2016 Dec; 24(26):A1546-A1559. PubMed ID: 28059284
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Organic-free colloidal semiconductor nanocrystals as luminescent sensors for metal ions and nitroaromatic explosives.
    Swarnkar A; Shanker GS; Nag A
    Chem Commun (Camb); 2014 May; 50(36):4743-6. PubMed ID: 24682020
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale.
    Archer PI; Santangelo SA; Gamelin DR
    J Am Chem Soc; 2007 Aug; 129(31):9808-18. PubMed ID: 17629274
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.
    Narayanan R; Das A; Deepa M; Srivastava AK
    Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.
    Binks DJ
    Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. One-step preparation and assembly of aqueous colloidal CdS(x)Se(1-x) nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells.
    Song X; Wang M; Deng J; Yang Z; Ran C; Zhang X; Yao X
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5139-48. PubMed ID: 23659502
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators.
    Wilson LR; Richards BS
    Appl Opt; 2009 Jan; 48(2):212-20. PubMed ID: 19137031
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrochemically controlled auger quenching of Mn²+ photoluminescence in doped semiconductor nanocrystals.
    White MA; Weaver AL; Beaulac R; Gamelin DR
    ACS Nano; 2011 May; 5(5):4158-68. PubMed ID: 21452880
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors.
    Verbunt PP; Tsoi S; Debije MG; Broer DJ; Bastiaansen CW; Lin CW; de Boer DK
    Opt Express; 2012 Sep; 20 Suppl 5():A655-68. PubMed ID: 23037532
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 73. One-pot synthesis of high-quality zinc-blende CdS nanocrystals.
    Cao YC; Wang J
    J Am Chem Soc; 2004 Nov; 126(44):14336-7. PubMed ID: 15521736
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Long afterglow Sr4Al14O25:Eu,Dy phosphors as both scattering and down converting layer for CdS quantum dot-sensitized solar cells.
    Sun H; Pan L; Zhu G; Piao X; Zhang L; Sun Z
    Dalton Trans; 2014 Oct; 43(40):14936-41. PubMed ID: 25252128
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling.
    Mulder CL; Reusswig PD; Velázquez AM; Kim H; Rotschild C; Baldo MA
    Opt Express; 2010 Apr; 18 Suppl 1():A79-90. PubMed ID: 20588577
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling.
    Mulder CL; Reusswig PD; Velázquez AM; Kim H; Rotschild C; Baldo MA
    Opt Express; 2010 Apr; 18(9):A79-90. PubMed ID: 20607889
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.
    Orfield NJ; McBride JR; Keene JD; Davis LM; Rosenthal SJ
    ACS Nano; 2015 Jan; 9(1):831-9. PubMed ID: 25526260
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-efficiency organic solar concentrators for photovoltaics.
    Currie MJ; Mapel JK; Heidel TD; Goffri S; Baldo MA
    Science; 2008 Jul; 321(5886):226-8. PubMed ID: 18621664
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups.
    Liu Y; Kim M; Wang Y; Wang YA; Peng X
    Langmuir; 2006 Jul; 22(14):6341-5. PubMed ID: 16800696
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solar-driven hydrogen evolution using a CuInS2/CdS/ZnO heterostructure nanowire array as an efficient photoanode.
    Choi Y; Beak M; Yong K
    Nanoscale; 2014 Aug; 6(15):8914-8. PubMed ID: 24965525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.