BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 25939721)

  • 1. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content.
    Bae S; Kim CW; Choi JS; Yang JW; Seo TS
    Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A droplet microfluidics platform for rapid microalgal growth and oil production analysis.
    Kim HS; Guzman AR; Thapa HR; Devarenne TP; Han A
    Biotechnol Bioeng; 2016 Aug; 113(8):1691-701. PubMed ID: 26724784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.
    Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL
    Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A planar dielectrophoresis-based chip for high-throughput cell pairing.
    Wu C; Chen R; Liu Y; Yu Z; Jiang Y; Cheng X
    Lab Chip; 2017 Nov; 17(23):4008-4014. PubMed ID: 29115319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugal microfluidic platform for single-cell level cardiomyocyte-based drug profiling and screening.
    Espulgar W; Aoki W; Ikeuchi T; Mita D; Saito M; Lee JK; Tamiya E
    Lab Chip; 2015 Sep; 15(17):3572-80. PubMed ID: 26215661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L; Chen Y; Chen Y; Wu H
    Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumps for microfluidic cell culture.
    Byun CK; Abi-Samra K; Cho YK; Takayama S
    Electrophoresis; 2014 Feb; 35(2-3):245-57. PubMed ID: 23893649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-throughput approach for analyzing single-cell genomic damage with an agarose-based microfluidic comet array.
    Li Y; Feng X; Du W; Li Y; Liu BF
    Anal Chem; 2013 Apr; 85(8):4066-73. PubMed ID: 23477638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets.
    Um E; Rha E; Choi SL; Lee SG; Park JK
    Lab Chip; 2012 May; 12(9):1594-7. PubMed ID: 22422143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.