These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25939998)

  • 1. Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards.
    Shen W; Lin X; Jiang C; Li C; Lin H; Huang J; Wang S; Liu G; Yan X; Zhong Q; Ren B
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7308-12. PubMed ID: 25939998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayer Ag-Embedded Silica Nanostructure as a Surface-Enhanced Raman Scattering-Based Chemical Sensor with Dual-Function Internal Standards.
    Hahm E; Cha MG; Kang EJ; Pham XH; Lee SH; Kim HM; Kim DE; Lee YS; Jeong DH; Jun BH
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40748-40755. PubMed ID: 30375227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rationality of using core
    Wang XA; Shen W; Zhou B; Yu D; Tang X; Liu J; Huang X
    RSC Adv; 2021 Jun; 11(33):20326-20334. PubMed ID: 35479874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film].
    Hu DJ; Zhang XJ; Xu MM; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1262-5. PubMed ID: 26415440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale.
    Chen HY; Lin MH; Wang CY; Chang YM; Gwo S
    J Am Chem Soc; 2015 Oct; 137(42):13698-705. PubMed ID: 26469218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fabrication of reproducible surface enhanced Raman scattering substrate and its application].
    Ni DD; Wang WW; Yao JL; Zhang XJ; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):394-7. PubMed ID: 21510389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.
    Yan X; Li P; Zhou B; Tang X; Li X; Weng S; Yang L; Liu J
    Anal Chem; 2017 May; 89(9):4875-4881. PubMed ID: 28357873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles.
    Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.
    Sugawa K; Tanoue Y; Ube T; Yanagida S; Yamamuro T; Kusaka Y; Ushijima H; Akiyama T
    Photochem Photobiol Sci; 2014 Jan; 13(1):82-91. PubMed ID: 24220219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering of p-aminothiophenol on a Au(core)/Cu(shell) nanoparticle assembly.
    Cao L; Diao P; Tong L; Zhu T; Liu Z
    Chemphyschem; 2005 May; 6(5):913-8. PubMed ID: 15884076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS).
    Li M; Yang H; Li S; Zhao K; Li J; Jiang D; Sun L; Deng A
    J Agric Food Chem; 2014 Nov; 62(45):10896-902. PubMed ID: 25343225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust quantitative SERS analysis with Relative Raman scattering intensities.
    Zhao F; Wang W; Zhong H; Yang F; Fu W; Ling Y; Zhang Z
    Talanta; 2021 Jan; 221():121465. PubMed ID: 33076085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ; Li DW; Qu LL; Long YT
    Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles.
    Yu Z; Smith ME; Zhang J; Zhou Y; Zhang P
    Mikrochim Acta; 2018 Jun; 185(7):330. PubMed ID: 29915873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive Detection of Protein with Wide Linear Dynamic Range Based on Core-Shell SERS Nanotags and Photonic Crystal Beads.
    Liu B; Ni H; Zhang D; Wang D; Fu D; Chen H; Gu Z; Zhao X
    ACS Sens; 2017 Jul; 2(7):1035-1043. PubMed ID: 28750518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.
    Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe.
    Ouyang L; Zhu L; Jiang J; Tang H
    Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.