BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25940378)

  • 41. Expression of Kir2.1 channels in astrocytes under pathophysiological conditions.
    Kang SJ; Cho SH; Park K; Yi J; Yoo SJ; Shin KS
    Mol Cells; 2008 Feb; 25(1):124-30. PubMed ID: 18319624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mislocalization of Kir channels in malignant glia.
    Olsen ML; Sontheimer H
    Glia; 2004 Apr; 46(1):63-73. PubMed ID: 14999814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. What do we not know about mitochondrial potassium channels?
    Laskowski M; Augustynek B; Kulawiak B; Koprowski P; Bednarczyk P; Jarmuszkiewicz W; Szewczyk A
    Biochim Biophys Acta; 2016 Aug; 1857(8):1247-1257. PubMed ID: 26951942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a novel bacterial K(+) channel.
    Tang G; Jiang B; Huang Y; Fu M; Wu L; Wang R
    J Membr Biol; 2011 Aug; 242(3):153-64. PubMed ID: 21744086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of Kir2.3 Channels by Tenidap Suppresses Epileptiform Burst Discharges in Cultured Hippocampal Neurons.
    Wu X; Chen Z; Sun W; Wang G; Zhang L; Zhang Y; Zang K; Wang Y
    CNS Neurol Disord Drug Targets; 2019; 18(8):621-630. PubMed ID: 31389319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart.
    Hassinen M; Haverinen J; Hardy ME; Shiels HA; Vornanen M
    Pflugers Arch; 2015 Dec; 467(12):2437-46. PubMed ID: 25991088
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of inwardly rectifying potassium channels by an inducible adenoviral vector reduced the neuronal hyperexcitability and hyperalgesia produced by chronic compression of the spinal ganglion.
    Ma C; Rosenzweig J; Zhang P; Johns DC; LaMotte RH
    Mol Pain; 2010 Oct; 6():65. PubMed ID: 20923570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inwardly rectifying K(+) (Kir) channels antagonize ictal-like epileptiform activity in area CA1 of the rat hippocampus.
    Andreasen M; Skov J; Nedergaard S
    Hippocampus; 2007; 17(11):1037-48. PubMed ID: 17604346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular and subcellular localization of Kir2.1 subunits in neurons and glia in piriform cortex with implications for K+ spatial buffering.
    Howe MW; Feig SL; Osting SM; Haberly LB
    J Comp Neurol; 2008 Feb; 506(5):877-93. PubMed ID: 18076085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kir2.1 Potassium channels and corneal epithelia.
    Rae JL; Shepard AR
    Curr Eye Res; 2000 Feb; 20(2):144-52. PubMed ID: 10617917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kir2.1 channels set two levels of resting membrane potential with inward rectification.
    Chen K; Zuo D; Liu Z; Chen H
    Pflugers Arch; 2018 Apr; 470(4):599-611. PubMed ID: 29282531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kir 4.1 channel expression in neuroblastomaxglioma hybrid NG108-15 cell line.
    Ma W; Grant GM; Pancrazio JJ; Kao WY; Shaffer KM; Liu QY; Barker JL; Cohen NA; Stenger DA
    Brain Res Dev Brain Res; 1999 Apr; 114(1):127-34. PubMed ID: 10209250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome.
    Chu W; Li C; Qu X; Zhao D; Wang X; Yu X; Cai F; Liang H; Zhang Y; Zhao X; Li B; Qiao G; Dong D; Lu Y; Du Z; Yang B
    Cardiovasc Res; 2012 Oct; 96(1):90-8. PubMed ID: 22853924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes.
    Diaz RJ; Zobel C; Cho HC; Batthish M; Hinek A; Backx PH; Wilson GJ
    Circ Res; 2004 Aug; 95(3):325-32. PubMed ID: 15231687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of the β-adrenoceptor blockers carvedilol and metoprolol on SQT1- and SQT2-mutant channels.
    Bodi I; Franke G; Pantulu ND; Wu K; Perez-Feliz S; Bode C; Zehender M; zur Hausen A; Brunner M; Odening KE
    J Cardiovasc Electrophysiol; 2013 Oct; 24(10):1163-71. PubMed ID: 23718892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow- and voltage-dependent blocking effect of ethosuximide on the inward rectifier K⁺ (Kir2.1) channel.
    Huang CW; Kuo CC
    Pflugers Arch; 2015 Aug; 467(8):1733-46. PubMed ID: 25220134
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells.
    Tang Q; Jin MW; Xiang JZ; Dong MQ; Sun HY; Lau CP; Li GR
    Biochem Pharmacol; 2007 Dec; 74(11):1596-607. PubMed ID: 17826747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.