BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 25940402)

  • 21. Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties.
    Huang B; Yang Z; Fang S; Li Y; Zhong Z; Zheng R; Zhang J; Wang H; Wang S; Zou Q; Wu L
    Nanoscale; 2020 Mar; 12(10):5834-5847. PubMed ID: 32068222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.
    Zhang Z; Wang C; Zha Y; Hu W; Gao Z; Zang Y; Chen J; Zhang J; Dong L
    ACS Nano; 2015 Mar; 9(3):2405-19. PubMed ID: 25587629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein deglycosylation can drastically affect the cellular uptake.
    Ghazaryan A; Landfester K; Mailänder V
    Nanoscale; 2019 Jun; 11(22):10727-10737. PubMed ID: 31120044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers.
    D'Addio SM; Baldassano S; Shi L; Cheung L; Adamson DH; Bruzek M; Anthony JE; Laskin DL; Sinko PJ; Prud'homme RK
    J Control Release; 2013 May; 168(1):41-9. PubMed ID: 23419950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability.
    Xiao W; Xiong J; Zhang S; Xiong Y; Zhang H; Gao H
    Int J Pharm; 2018 Mar; 538(1-2):105-111. PubMed ID: 29341915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PEGylated nanocarriers for systemic delivery.
    Jain NK; Nahar M
    Methods Mol Biol; 2010; 624():221-34. PubMed ID: 20217599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery.
    Narayanan D; Nair S; Menon D
    Int J Biol Macromol; 2015 Mar; 74():575-84. PubMed ID: 25572720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery.
    Miao Y; Li L; Wang Y; Wang J; Zhou Y; Guo L; Zhao Y; Nie D; Zhang Y; Zhang X; Gan Y
    Nat Commun; 2024 Feb; 15(1):1159. PubMed ID: 38326312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona.
    Ahsan SM; Rao CM; Ahmad MF
    Adv Exp Med Biol; 2018; 1048():175-198. PubMed ID: 29453539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the protein corona of polymeric nanocapsules: effect of polymer shell on protein adsorption.
    Berrecoso G; Bravo SB; Arriaga I; Abrescia N; Crecente-Campo J; Alonso MJ
    Drug Deliv Transl Res; 2024 Apr; 14(4):918-933. PubMed ID: 37805955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake.
    Deuker MFS; Mailänder V; Morsbach S; Landfester K
    Nanoscale Horiz; 2023 Sep; 8(10):1377-1385. PubMed ID: 37591816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles.
    Varnamkhasti BS; Hosseinzadeh H; Azhdarzadeh M; Vafaei SY; Esfandyari-Manesh M; Mirzaie ZH; Amini M; Ostad SN; Atyabi F; Dinarvand R
    Int J Pharm; 2015 Oct; 494(1):430-44. PubMed ID: 26315125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions.
    Wan S; Kelly PM; Mahon E; Stöckmann H; Rudd PM; Caruso F; Dawson KA; Yan Y; Monopoli MP
    ACS Nano; 2015 Feb; 9(2):2157-66. PubMed ID: 25599105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells.
    Pozzi D; Colapicchioni V; Caracciolo G; Piovesana S; Capriotti AL; Palchetti S; De Grossi S; Riccioli A; Amenitsch H; Laganà A
    Nanoscale; 2014 Mar; 6(5):2782-92. PubMed ID: 24463404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein corona on brain targeted nanocarriers: Challenges and prospects.
    Jiang K; Yu Y; Qiu W; Tian K; Guo Z; Qian J; Lu H; Zhan C
    Adv Drug Deliv Rev; 2023 Nov; 202():115114. PubMed ID: 37827336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles.
    Chen D; Ganesh S; Wang W; Amiji M
    AAPS J; 2020 Jun; 22(4):83. PubMed ID: 32495039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein corona change the drug release profile of nanocarriers: the "overlooked" factor at the nanobio interface.
    Behzadi S; Serpooshan V; Sakhtianchi R; Müller B; Landfester K; Crespy D; Mahmoudi M
    Colloids Surf B Biointerfaces; 2014 Nov; 123():143-9. PubMed ID: 25262409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas.
    Dai Q; Yan Y; Ang CS; Kempe K; Kamphuis MM; Dodds SJ; Caruso F
    ACS Nano; 2015 Mar; 9(3):2876-85. PubMed ID: 25712076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes.
    Aoyama M; Hata K; Higashisaka K; Nagano K; Yoshioka Y; Tsutsumi Y
    Biochem Biophys Res Commun; 2016 Nov; 480(4):690-695. PubMed ID: 27983983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailored Dual PEGylation of Inorganic Porous Nanocarriers for Extremely Long Blood Circulation in Vivo.
    Nissinen T; Näkki S; Laakso H; Kučiauskas D; Kaupinis A; Kettunen MI; Liimatainen T; Hyvönen M; Valius M; Gröhn O; Lehto VP
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32723-32731. PubMed ID: 27934159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.