BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25940750)

  • 1. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds.
    Hamblin GD; Rahbani JF; Sleiman HF
    Nat Commun; 2015 May; 6():7065. PubMed ID: 25940750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addressable DNA nanotubes with repetitive components.
    Bai T; Wei B
    Nanoscale; 2019 Dec; 11(48):23105-23109. PubMed ID: 31776535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure.
    Endo M; Xing X; Zhou X; Emura T; Hidaka K; Tuesuwan B; Sugiyama H
    ACS Nano; 2015 Oct; 9(10):9922-9. PubMed ID: 26371377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions.
    Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF
    Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.
    Vogel S; Rackwitz J; Schürman R; Prinz J; Milosavljević AR; Réfrégiers M; Giuliani A; Bald I
    J Phys Chem Lett; 2015 Nov; 6(22):4589-93. PubMed ID: 26536162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled growth of DNA structures from repeating units using the vernier mechanism.
    Greschner AA; Bujold KE; Sleiman HF
    Biomacromolecules; 2014 Aug; 15(8):3002-8. PubMed ID: 24964288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami: Scaffolds for Creating Higher Order Structures.
    Hong F; Zhang F; Liu Y; Yan H
    Chem Rev; 2017 Oct; 117(20):12584-12640. PubMed ID: 28605177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of One- and Two-Dimensional Nanostructures by the Sequential Assembly of Quadruplex DNA Scaffolds.
    Cao Y; Kuang Y; Yang L; Ding P; Pei R
    Biomacromolecules; 2019 Jun; 20(6):2207-2217. PubMed ID: 31042021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami.
    Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF
    Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One DNA strand homo-polymerizes into defined nanostructures.
    Li M; Zuo H; Yu J; Zhao X; Mao C
    Nanoscale; 2017 Aug; 9(30):10601-10605. PubMed ID: 28726950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands.
    Lau KL; Sleiman HF
    ACS Nano; 2016 Jul; 10(7):6542-51. PubMed ID: 27303951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.