BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25940865)

  • 1. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.
    Boix M; Eslava S; Costa Machado G; Gosselin E; Ni N; Saiz E; De Coninck J
    J Biomed Mater Res A; 2015 Nov; 103(11):3493-502. PubMed ID: 25940865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution/reprecipitation and protein adsorption studies of calcium phosphate coatings by FT-IR/ATR techniques.
    Ong JL; Chittur KK; Lucas LC
    J Biomed Mater Res; 1994 Nov; 28(11):1337-46. PubMed ID: 7829564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption.
    Zhu XD; Zhang HJ; Fan HS; Li W; Zhang XD
    Acta Biomater; 2010 Apr; 6(4):1536-41. PubMed ID: 19857608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy.
    Yang Q; Zhang Y; Liu M; Ye M; Zhang Y; Yao S
    Anal Chim Acta; 2007 Jul; 597(1):58-66. PubMed ID: 17658313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces.
    Zeng H; Chittur KK; Lacefield WR
    Biomaterials; 1999 Feb; 20(4):377-84. PubMed ID: 10048411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice.
    Wang J; Chen Y; Zhu X; Yuan T; Tan Y; Fan Y; Zhang X
    J Biomed Mater Res A; 2014 Dec; 102(12):4234-43. PubMed ID: 24497384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins.
    Buchanan LA; El-Ghannam A
    J Biomed Mater Res A; 2010 May; 93(2):537-46. PubMed ID: 19585571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of pro-osteogenic responses by a bioactive ceramic coating.
    Aniket ; Young A; Marriott I; El-Ghannam A
    J Biomed Mater Res A; 2012 Dec; 100(12):3314-25. PubMed ID: 22733626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure.
    Wang J; Zhang H; Zhu X; Fan H; Fan Y; Zhang X
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1069-77. PubMed ID: 23559460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics.
    Li B; Liao X; Zheng L; Zhu X; Wang Z; Fan H; Zhang X
    Acta Biomater; 2012 Oct; 8(10):3794-804. PubMed ID: 22729020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S; Anada T; Honda Y; Suzuki O
    Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralisation of two phosphate ceramics in HBSS: role of albumin.
    Marques PA; Serro AP; Saramago BJ; Fernandes AC; Magalhães MC; Correia RN
    Biomaterials; 2003 Feb; 24(3):451-60. PubMed ID: 12423600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation change of bovine serum albumin induced by bioactive titanium metals and its effects on cell behaviors.
    Hu XN; Yang BC
    J Biomed Mater Res A; 2014 Apr; 102(4):1053-62. PubMed ID: 23630013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo.
    Zhu XD; Fan HS; Xiao YM; Li DX; Zhang HJ; Luxbacher T; Zhang XD
    Acta Biomater; 2009 May; 5(4):1311-8. PubMed ID: 19121984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion.
    dos Santos EA; Farina M; Soares GA; Anselme K
    J Mater Sci Mater Med; 2008 Jun; 19(6):2307-16. PubMed ID: 18157507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics.
    Nakamura S; Kobayashi T; Nakamura M; Itoh S; Yamashita K
    J Biomed Mater Res A; 2010 Jan; 92(1):267-75. PubMed ID: 19180523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite.
    Xie J; Riley C; Kumar M; Chittur K
    Biomaterials; 2002 Sep; 23(17):3609-16. PubMed ID: 12109686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure.
    Li B; Chen X; Guo B; Wang X; Fan H; Zhang X
    Acta Biomater; 2009 Jan; 5(1):134-43. PubMed ID: 18799376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.