These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 25940917)
1. Metal dicarboxylates: new anode materials for lithium-ion batteries with good cycling performance. Fei H; Liu X; Li Z; Feng W Dalton Trans; 2015 Jun; 44(21):9909-14. PubMed ID: 25940917 [TBL] [Abstract][Full Text] [Related]
2. Stable anode performance of vanadium oxide hydrate semi-microspheres and their graphene based composite microspheres in sodium-ion batteries. Fei H; Li Z; Feng W; Liu X Dalton Trans; 2015 Jan; 44(1):146-50. PubMed ID: 25357230 [TBL] [Abstract][Full Text] [Related]
3. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
4. Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures. Zhang W; Zhou W; Wright JH; Kim YN; Liu D; Xiao X ACS Appl Mater Interfaces; 2014 May; 6(10):7292-300. PubMed ID: 24809928 [TBL] [Abstract][Full Text] [Related]
5. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Chen T; Pan L; Loh TA; Chua DH; Yao Y; Chen Q; Li D; Qin W; Sun Z Dalton Trans; 2014 Oct; 43(40):14931-5. PubMed ID: 24934560 [TBL] [Abstract][Full Text] [Related]
6. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes. Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289 [TBL] [Abstract][Full Text] [Related]
7. Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Liu Q; Yu L; Wang Y; Ji Y; Horvat J; Cheng ML; Jia X; Wang G Inorg Chem; 2013 Mar; 52(6):2817-22. PubMed ID: 23461562 [TBL] [Abstract][Full Text] [Related]
8. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
10. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. Wang C; Yin L; Xiang D; Qi Y ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097 [TBL] [Abstract][Full Text] [Related]
11. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
12. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Hu L; Chen Q Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788 [TBL] [Abstract][Full Text] [Related]
13. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance. Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
15. Rectangular Co3O4 with micro-/nanoarchitectures: charge-driven PDDA-assisted synthesis and excellent lithium storage performance. Wang B; Tang Y; Lu XY; Fung SL; Wong KY; Au WK; Wu P Phys Chem Chem Phys; 2016 Feb; 18(6):4911-23. PubMed ID: 26806116 [TBL] [Abstract][Full Text] [Related]
16. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Yu M; Wang A; Wang Y; Li C; Shi G Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141 [TBL] [Abstract][Full Text] [Related]
17. Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries. Li T; Wang YY; Tang R; Qi YX; Lun N; Bai YJ; Fan RH ACS Appl Mater Interfaces; 2013 Oct; 5(19):9470-7. PubMed ID: 24007324 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of one-dimensional Mn₃O₄/Zn₂SnO₄ hybrid composites and their high performance as anodes for LIBs. Zhang R; He Y; Li A; Xu L Nanoscale; 2014 Nov; 6(23):14221-6. PubMed ID: 25195654 [TBL] [Abstract][Full Text] [Related]
19. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566 [TBL] [Abstract][Full Text] [Related]
20. Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Mondal AK; Su D; Chen S; Ung A; Kim HS; Wang G Chemistry; 2015 Jan; 21(4):1526-32. PubMed ID: 25445256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]