These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25941071)

  • 41. Highly oriented carbon nanotube papers made of aligned carbon nanotubes.
    Wang D; Song P; Liu C; Wu W; Fan S
    Nanotechnology; 2008 Feb; 19(7):075609. PubMed ID: 21817646
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films.
    Li Q; Liu C
    Nanotechnology; 2019 Nov; 31(8):. PubMed ID: 31627200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and tensile conductivity of carbon nanotube/polyurethane nanofiber conductive films based on the centrifugal spinning method.
    Luo W; Mei SQ; Liu T; Yang LY; Fan LL
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34933287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.
    Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of High Content Carbon Nanotube-Polyurethane Sheets with Tailorable Properties.
    Martinez-Rubi Y; Ashrafi B; Jakubinek MB; Zou S; Laqua K; Barnes M; Simard B
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30840-30849. PubMed ID: 28829567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical and electrical enhancement of super-aligned carbon nanotube film by organic and inorganic doping.
    Wang Y; Li M; Gu Y; Wang S; Li Q; Zhang Z
    Nanotechnology; 2020 Feb; 31(7):075601. PubMed ID: 31645024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporating carbon nanotubes in sol-gel synthesized indium tin oxide transparent conductive films.
    Golobostanfard MR; Mohammadi S; Abdizadeh H; Baghchesara MA
    Langmuir; 2014 Oct; 30(39):11785-91. PubMed ID: 25203935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Carbon-Nanotube Manipulations and Devices Based on Macroscale Anthracene Flakes.
    Shen B; Zhu Z; Zhang J; Xie H; Bai Y; Wei F
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29271506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure.
    Haskins RW; Maier RS; Ebeling RM; Marsh CP; Majure DL; Bednar AJ; Welch CR; Barker BC; Wu DT
    J Chem Phys; 2007 Aug; 127(7):074708. PubMed ID: 17718628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites.
    Zhu J; Cao W; Yue M; Hou Y; Han J; Yang M
    ACS Nano; 2015 Mar; 9(3):2489-501. PubMed ID: 25712334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites.
    Zhang L; Kowalik M; Mao Q; Damirchi B; Zhang Y; Bradford PD; Li Q; van Duin ACT; Zhu YT
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32656-32666. PubMed ID: 37384459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.
    Liou KH; Tsou NT; Kang DY
    Nanoscale; 2015 Oct; 7(39):16222-9. PubMed ID: 26204559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe
    Lim GH; Woo S; Lee H; Moon KS; Sohn H; Lee SE; Lim B
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40628-40637. PubMed ID: 29094592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.