These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25941468)

  • 1. Using a motion capture system for spatial localization of EEG electrodes.
    Reis PM; Lochmann M
    Front Neurosci; 2015; 9():130. PubMed ID: 25941468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithmic localization of high-density EEG electrode positions using motion capture.
    Hirth LN; Stanley CJ; Damiano DL; Bulea TC
    J Neurosci Methods; 2020 Dec; 346():108919. PubMed ID: 32853593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions.
    Homölle S; Oostenveld R
    J Neurosci Methods; 2019 Oct; 326():108378. PubMed ID: 31376413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas.
    Shirazi SY; Huang HJ
    Front Neurosci; 2019; 13():1159. PubMed ID: 31787866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial localization of EEG electrodes using 3D scanning.
    Taberna GA; Marino M; Ganzetti M; Mantini D
    J Neural Eng; 2019 Apr; 16(2):026020. PubMed ID: 30634182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geodesic photogrammetry for localizing sensor positions in dense-array EEG.
    Russell GS; Jeffrey Eriksen K; Poolman P; Luu P; Tucker DM
    Clin Neurophysiol; 2005 May; 116(5):1130-40. PubMed ID: 15826854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Localization of EEG Electrodes in a TOF+CCD Camera System.
    Chen S; He Y; Qiu H; Yan X; Zhao M
    Front Neuroinform; 2019; 13():21. PubMed ID: 31024285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D camera.
    van Dam PM; Gordon JP; Laks M
    J Electrocardiol; 2014; 47(6):788-93. PubMed ID: 25194874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial mislocalization of EEG electrodes -- effects on accuracy of dipole estimation.
    Khosla D; Don M; Kwong B
    Clin Neurophysiol; 1999 Feb; 110(2):261-71. PubMed ID: 10210615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy.
    Towle VL; Bolaños J; Suarez D; Tan K; Grzeszczuk R; Levin DN; Cakmur R; Frank SA; Spire JP
    Electroencephalogr Clin Neurophysiol; 1993 Jan; 86(1):1-6. PubMed ID: 7678386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the MoBI motion capture system to rapidly and accurately localize EEG electrodes in anatomic space.
    Mazurek KA; Patelaki E; Foxe JJ; Freedman EG
    Eur J Neurosci; 2021 Dec; 54(12):8396-8405. PubMed ID: 33103279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.
    de Munck JC; van Houdt PJ; Verdaasdonk RM; Ossenblok PP
    Neuroimage; 2012 Jan; 59(1):399-403. PubMed ID: 21784161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.
    Pieters TA; Conner CR; Tandon N
    J Neurosurg; 2013 May; 118(5):1086-97. PubMed ID: 23495883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of implanted EEG electrodes in a virtual-reality environment.
    Noordmans HJ; van Rijen PC; van Veelen CW; Viergever MA; Hoekema R
    Comput Aided Surg; 2001; 6(5):241-58. PubMed ID: 11892001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.
    Clausner T; Dalal SS; Crespo-García M
    Front Neurosci; 2017; 11():264. PubMed ID: 28559791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of 10-20 system electrode locations using magnetic resonance image scanning with markers.
    Lagerlund TD; Sharbrough FW; Jack CR; Erickson BJ; Strelow DC; Cicora KM; Busacker NE
    Electroencephalogr Clin Neurophysiol; 1993 Jan; 86(1):7-14. PubMed ID: 7678393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies.
    Le J; Lu M; Pellouchoud E; Gevins A
    Electroencephalogr Clin Neurophysiol; 1998 Jun; 106(6):554-8. PubMed ID: 9741756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraoperative computed tomography for intracranial electrode implantation surgery in medically refractory epilepsy.
    Lee DJ; Zwienenberg-Lee M; Seyal M; Shahlaie K
    J Neurosurg; 2015 Mar; 122(3):526-31. PubMed ID: 25361483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Localization of Cochlear Implant Electrode Contacts in CT.
    Bennink E; Peters JPM; Wendrich AW; Vonken EJ; van Zanten GA; Viergever MA
    Ear Hear; 2017; 38(6):e376-e384. PubMed ID: 28379904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single camera photogrammetry system for EEG electrode identification and localization.
    Baysal U; Sengül G
    Ann Biomed Eng; 2010 Apr; 38(4):1539-47. PubMed ID: 20186487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.