BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25941471)

  • 41. Fast interaction between AMPA and NMDA receptors by intracellular calcium.
    Rozov A; Burnashev N
    Cell Calcium; 2016 Dec; 60(6):407-414. PubMed ID: 27707506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered Synaptic and Extrasynaptic NMDA Receptor Properties in Substantia Nigra Dopaminergic Neurons From Mice Lacking the GluN2D Subunit.
    Morris PG; Mishina M; Jones S
    Front Cell Neurosci; 2018; 12():354. PubMed ID: 30364232
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures.
    Mennerick S; Jevtovic-Todorovic V; Todorovic SM; Shen W; Olney JW; Zorumski CF
    J Neurosci; 1998 Dec; 18(23):9716-26. PubMed ID: 9822732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.
    MacDonald JF; Jackson MF; Beazely MA
    Crit Rev Neurobiol; 2006; 18(1-2):71-84. PubMed ID: 17725510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.
    Racca C; Stephenson FA; Streit P; Roberts JD; Somogyi P
    J Neurosci; 2000 Apr; 20(7):2512-22. PubMed ID: 10729331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus.
    Koeppen J; Nguyen AQ; Nikolakopoulou AM; Garcia M; Hanna S; Woodruff S; Figueroa Z; Obenaus A; Ethell IM
    J Neurosci; 2018 Jun; 38(25):5710-5726. PubMed ID: 29793972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups.
    Oshima-Takago T; Takago H
    Open Biol; 2017 Jul; 7(7):. PubMed ID: 28747405
    [No Abstract]   [Full Text] [Related]  

  • 48. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus.
    Tang Y; Ye M; Du Y; Qiu X; Lv X; Yang W; Luo J
    Neuroscience; 2015 Sep; 304():109-21. PubMed ID: 26204818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina.
    Zhang J; Diamond JS
    J Comp Neurol; 2006 Oct; 498(6):810-20. PubMed ID: 16927255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinophilin-dependent regulation of GluN2B-containing NMDAR-dependent calcium influx, GluN2B surface expression, and cleaved caspase expression.
    Salek AB; Claeboe ET; Bansal R; Berbari NF; Baucum AJ
    Synapse; 2023 May; 77(3):e22264. PubMed ID: 36738175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GluN2B-containing NMDARs in the mammalian brain: pharmacology, physiology, and pathology.
    Ge Y; Wang YT
    Front Mol Neurosci; 2023; 16():1190324. PubMed ID: 37324591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increase in AMPA receptor-mediated miniature EPSC amplitude after chronic NMDA receptor blockade in cultured hippocampal neurons.
    Kato K; Sekino Y; Takahashi H; Yasuda H; Shirao T
    Neurosci Lett; 2007 May; 418(1):4-8. PubMed ID: 17395372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calpain regulation of AMPA receptor channels in cortical pyramidal neurons.
    Yuen EY; Gu Z; Yan Z
    J Physiol; 2007 Apr; 580(Pt 1):241-54. PubMed ID: 17234699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex.
    Ferrer C; Hsieh H; Wollmuth LP
    J Neurophysiol; 2018 Dec; 120(6):3063-3076. PubMed ID: 30303753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-β1-40 in Hippocampal Cells.
    Li Y; Chang L; Song Y; Gao X; Roselli F; Liu J; Zhou W; Fang Y; Ling W; Li H; Almeida OF; Wu Y
    J Alzheimers Dis; 2016 Aug; 54(1):135-48. PubMed ID: 27497478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission.
    Madara JC; Levine ES
    J Neurophysiol; 2008 Dec; 100(6):3175-84. PubMed ID: 18922945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex.
    Béïque JC; Andrade R
    J Physiol; 2003 Feb; 546(Pt 3):859-67. PubMed ID: 12563010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hippocampal NMDA receptors and the previous experience effect on memory.
    Cercato MC; Colettis N; Snitcofsky M; Aguirre AI; Kornisiuk EE; Baez MV; Jerusalinsky DA
    J Physiol Paris; 2014; 108(4-6):263-9. PubMed ID: 25132342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina.
    Chen S; Diamond JS
    J Neurosci; 2002 Mar; 22(6):2165-73. PubMed ID: 11896156
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.