BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

854 related articles for article (PubMed ID: 25941561)

  • 1. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy.
    Leone RD; Lo YC; Powell JD
    Comput Struct Biotechnol J; 2015; 13():265-72. PubMed ID: 25941561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models.
    Leone RD; Sun IM; Oh MH; Sun IH; Wen J; Englert J; Powell JD
    Cancer Immunol Immunother; 2018 Aug; 67(8):1271-1284. PubMed ID: 29923026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of PD-1 Blockade in Cancer Immunotherapy.
    Wu X; Gu Z; Chen Y; Chen B; Chen W; Weng L; Liu X
    Comput Struct Biotechnol J; 2019; 17():661-674. PubMed ID: 31205619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy.
    Steingold JM; Hatfield SM
    Front Immunol; 2020; 11():570041. PubMed ID: 33117358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses.
    Beavis PA; Milenkovski N; Henderson MA; John LB; Allard B; Loi S; Kershaw MH; Stagg J; Darcy PK
    Cancer Immunol Res; 2015 May; 3(5):506-17. PubMed ID: 25672397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses.
    Chen X; Pan X; Zhang W; Guo H; Cheng S; He Q; Yang B; Ding L
    Acta Pharm Sin B; 2020 May; 10(5):723-733. PubMed ID: 32528824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis.
    Yu Y; Zeng D; Ou Q; Liu S; Li A; Chen Y; Lin D; Gao Q; Zhou H; Liao W; Yao H
    JAMA Netw Open; 2019 Jul; 2(7):e196879. PubMed ID: 31290993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature.
    Yadav R; Hakobyan N; Wang JC
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of adenosine A2A receptor enhances CD8
    Ma SR; Deng WW; Liu JF; Mao L; Yu GT; Bu LL; Kulkarni AB; Zhang WF; Sun ZJ
    Mol Cancer; 2017 Jun; 16(1):99. PubMed ID: 28592285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment.
    Mediavilla-Varela M; Castro J; Chiappori A; Noyes D; Hernandez DC; Allard B; Stagg J; Antonia SJ
    Neoplasia; 2017 Jul; 19(7):530-536. PubMed ID: 28582704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma.
    Mahoney KM; Freeman GJ; McDermott DF
    Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine-A2A Receptor Pathway in Cancer Immunotherapy.
    Sun C; Wang B; Hao S
    Front Immunol; 2022; 13():837230. PubMed ID: 35386701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance to Checkpoint Inhibition in Cancer Immunotherapy.
    Barrueto L; Caminero F; Cash L; Makris C; Lamichhane P; Deshmukh RR
    Transl Oncol; 2020 Mar; 13(3):100738. PubMed ID: 32114384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A
    Kjaergaard J; Hatfield S; Jones G; Ohta A; Sitkovsky M
    J Immunol; 2018 Jul; 201(2):782-791. PubMed ID: 29802128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting adenosine for cancer immunotherapy.
    Leone RD; Emens LA
    J Immunother Cancer; 2018 Jun; 6(1):57. PubMed ID: 29914571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stromal PD-L1-Positive Regulatory T cells and PD-1-Positive CD8-Positive T cells Define the Response of Different Subsets of Non-Small Cell Lung Cancer to PD-1/PD-L1 Blockade Immunotherapy.
    Wu SP; Liao RQ; Tu HY; Wang WJ; Dong ZY; Huang SM; Guo WB; Gou LY; Sun HW; Zhang Q; Xie Z; Yan LX; Su J; Yang JJ; Zhong WZ; Zhang XC; Wu YL
    J Thorac Oncol; 2018 Apr; 13(4):521-532. PubMed ID: 29269008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
    Allard B; Pommey S; Smyth MJ; Stagg J
    Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.