These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 25941571)

  • 1. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement.
    Neumann W; Martinuzzi S; Estes AB; Pidgeon AM; Dettki H; Ericsson G; Radeloff VC
    Mov Ecol; 2015; 3(1):8. PubMed ID: 25941571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the potential of remote sensing-based models to predict old-growth forests on large spatiotemporal scales.
    Lalechère E; Monnet JM; Breen J; Fuhr M
    J Environ Manage; 2024 Feb; 351():119865. PubMed ID: 38159307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of remotely-sensed data products via ecological niche modeling of avian influenza case occurrences in Middle Eastern poultry.
    Bodbyl-Roels S; Peterson AT; Xiao X
    Int J Health Geogr; 2011 Mar; 10():21. PubMed ID: 21443769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research.
    Maxwell SK; Meliker JR; Goovaerts P
    J Expo Sci Environ Epidemiol; 2010 Mar; 20(2):176-85. PubMed ID: 19240763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MODISTools - downloading and processing MODIS remotely sensed data in R.
    Tuck SL; Phillips HR; Hintzen RE; Scharlemann JP; Purvis A; Hudson LN
    Ecol Evol; 2014 Dec; 4(24):4658-68. PubMed ID: 25558360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remotely sensed soil moisture to estimate savannah NDVI.
    Boke-Olén N; Ardö J; Eklundh L; Holst T; Lehsten V
    PLoS One; 2018; 13(7):e0200328. PubMed ID: 29995901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties.
    Mahoney PJ; Liston GE; LaPoint S; Gurarie E; Mangipane B; Wells AG; Brinkman TJ; Eitel JUH; Hebblewhite M; Nolin AW; Boelman N; Prugh LR
    Ecol Appl; 2018 Oct; 28(7):1715-1729. PubMed ID: 30074675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Remotely Sensed Total Basin Discharge and Its Seasonal Error Characterization in the Yangtze River Basin.
    Chen Y; Fok HS; Ma Z; Tenzer R
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31375013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking remote sensing, land cover and disease.
    Curran PJ; Atkinson PM; Foody GM; Milton EJ
    Adv Parasitol; 2000; 47():37-80. PubMed ID: 10997204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data.
    Dlamini SN; Franke J; Vounatsou P
    Geospat Health; 2015 Jun; 10(1):302. PubMed ID: 26054511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia.
    Dile YT; Ayana EK; Worqlul AW; Xie H; Srinivasan R; Lefore N; You L; Clarke N
    Sci Total Environ; 2020 Nov; 743():140702. PubMed ID: 32758830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.
    Hakkenberg CR; Peet RK; Urban DL; Song C
    Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering Ecological Patterns with Convolutional Neural Networks.
    Brodrick PG; Davies AB; Asner GP
    Trends Ecol Evol; 2019 Aug; 34(8):734-745. PubMed ID: 31078331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of larval and adult anopheline mosquito habitats in the Republic of Korea: potential use of remotely sensed data to estimate mosquito distributions.
    Sithiprasasna R; Lee WJ; Ugsang DM; Linthicum KJ
    Int J Health Geogr; 2005 Jul; 4():17. PubMed ID: 16011809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiversity and agriculture in dynamic landscapes: Integrating ground and remotely-sensed baseline surveys.
    Gillison AN; Asner GP; Fernandes EC; Mafalacusser J; Banze A; Izidine S; da Fonseca AR; Pacate H
    J Environ Manage; 2016 Jul; 177():9-19. PubMed ID: 27064732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.
    Wilson AM; Jetz W
    PLoS Biol; 2016 Mar; 14(3):e1002415. PubMed ID: 27031693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AIMS for wildlife: Developing an automated interactive monitoring system to integrate real-time movement and environmental data for true adaptive management.
    Casazza ML; Lorenz AA; Overton CT; Matchett EL; Mott AL; Mackell DA; McDuie F
    J Environ Manage; 2023 Nov; 345():118636. PubMed ID: 37574637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.