These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25941674)

  • 1. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy.
    Lupoi JS; Gjersing E; Davis MF
    Front Bioeng Biotechnol; 2015; 3():50. PubMed ID: 25941674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy.
    Shih CJ; Smith EA
    Anal Chim Acta; 2009 Oct; 653(2):200-6. PubMed ID: 19808114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput Screening of Recalcitrance Variations in Lignocellulosic Biomass: Total Lignin, Lignin Monomers, and Enzymatic Sugar Release.
    Decker SR; Sykes RW; Turner GB; Lupoi JS; Doepkke C; Tucker MP; Schuster LA; Mazza K; Himmel ME; Davis MF; Gjersing E
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26437006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass.
    Zhang J; Wang Y; Du X; Qu Y
    Bioresour Technol; 2020 May; 303():122846. PubMed ID: 32032935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale.
    Lambert E; Aguié-Béghin V; Dessaint D; Foulon L; Chabbert B; Paës G; Molinari M
    Biomacromolecules; 2019 Jan; 20(1):515-527. PubMed ID: 30532964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis.
    Zoghlami A; Paës G
    Front Chem; 2019; 7():874. PubMed ID: 31921787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared quantification of sugars in pretreated biomass liquors.
    Tucker MP; Mitri RK; Eddy FP; Nguyen QA; Gedvilas LM; Webb JD
    Appl Biochem Biotechnol; 2000; 84-86():39-50. PubMed ID: 10849777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulosic ethanol production: Progress, challenges and strategies for solutions.
    Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW
    Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitated delignification in CAD deficient transgenic poplar studied by confocal Raman spectroscopy imaging.
    Segmehl JS; Keplinger T; Krasnobaev A; Berg JK; Willa C; Burgert I
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():177-184. PubMed ID: 30099316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of lignocellulosic materials for ethanol production: a review.
    Sun Y; Cheng J
    Bioresour Technol; 2002 May; 83(1):1-11. PubMed ID: 12058826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.
    McCann MC; Carpita NC
    J Exp Bot; 2015 Jul; 66(14):4109-18. PubMed ID: 26060266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy.
    Iversen JA; Ahring BK
    Bioresour Technol; 2014 Nov; 172():112-120. PubMed ID: 25255187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
    Bhagia S; Li H; Gao X; Kumar R; Wyman CE
    Biotechnol Biofuels; 2016; 9():245. PubMed ID: 27833657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.