These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25941674)

  • 21. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
    Bhagia S; Li H; Gao X; Kumar R; Wyman CE
    Biotechnol Biofuels; 2016; 9():245. PubMed ID: 27833657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
    Kim D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29389875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials.
    Wi SG; Cho EJ; Lee DS; Lee SJ; Lee YJ; Bae HJ
    Biotechnol Biofuels; 2015; 8():228. PubMed ID: 26705422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.
    Nguyen TY; Cai CM; Kumar R; Wyman CE
    ChemSusChem; 2015 May; 8(10):1716-25. PubMed ID: 25677100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review.
    Hosseini Koupaie E; Dahadha S; Bazyar Lakeh AA; Azizi A; Elbeshbishy E
    J Environ Manage; 2019 Mar; 233():774-784. PubMed ID: 30314871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review of Second Generation Bioethanol Production from Residual Biomass.
    Robak K; Balcerek M
    Food Technol Biotechnol; 2018 Jun; 56(2):174-187. PubMed ID: 30228792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.
    Lubieniechi S; Peranantham T; Levin DB
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):25-35. PubMed ID: 22779440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous pretreatment, hydrolysis, and fermentation of organic residues for the production of biochemicals.
    Peinemann JC; Pleissner D
    Bioresour Technol; 2020 Jan; 295():122256. PubMed ID: 31645308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.
    Devendra LP; Kiran Kumar M; Pandey A
    Bioresour Technol; 2016 Aug; 213():350-358. PubMed ID: 27013188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance.
    Li M; Pu Y; Ragauskas AJ
    Front Chem; 2016; 4():45. PubMed ID: 27917379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignin-first biomass fractionation using a hybrid organosolv - Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass.
    Matsakas L; Raghavendran V; Yakimenko O; Persson G; Olsson E; Rova U; Olsson L; Christakopoulos P
    Bioresour Technol; 2019 Feb; 273():521-528. PubMed ID: 30471644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.