These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25941832)

  • 21. Acute toxicity of thioarsenates to Vibrio fischeri.
    Planer-Friedrich B; Franke D; Merkel B; Wallschläger D
    Environ Toxicol Chem; 2008 Oct; 27(10):2027-35. PubMed ID: 18422398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.
    Oremland RS; Hoeft SE; Santini JM; Bano N; Hollibaugh RA; Hollibaugh JT
    Appl Environ Microbiol; 2002 Oct; 68(10):4795-802. PubMed ID: 12324322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microbial arsenic cycle in a salt-saturated, extreme environment.
    Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF
    Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [XAS Analysis upon Dissolved Species of Orpiment in Anoxic Environment].
    Wang Y; Xu LY; Wang SF; Xiao F; Jia YF
    Huan Jing Ke Xue; 2015 Sep; 36(9):3298-303. PubMed ID: 26717691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic Analysis of Two
    Ahn AC; Cavalca L; Colombo M; Schuurmans JM; Sorokin DY; Muyzer G
    Front Microbiol; 2019; 10():1514. PubMed ID: 31333619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).
    Keller NS; Stefánsson A; Sigfússon B
    Talanta; 2014 Oct; 128():466-72. PubMed ID: 25059187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions.
    Sun J; Hong Y; Guo J; Yang J; Huang D; Lin Z; Jiang F
    Water Res; 2019 Mar; 151():362-370. PubMed ID: 30616048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments.
    Couture RM; Van Cappellen P
    J Hazard Mater; 2011 May; 189(3):647-52. PubMed ID: 21382662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The arsenic species in the sulfidic environments: Determination, transformation, and geochemical implications.
    Wang Y; Zhang P; Wang S; Song Y; Xiao F; Wang Y; Zhang D; Jia Y
    Chemosphere; 2022 Nov; 307(Pt 4):135971. PubMed ID: 35987268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters.
    Planer-Friedrich B; Wallschläger D
    Environ Sci Technol; 2009 Jul; 43(13):5007-13. PubMed ID: 19673299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation.
    Jebelli MA; Maleki A; Amoozegar MA; Kalantar E; Shahmoradi B; Gharibi F
    Ecotoxicol Environ Saf; 2017 Jun; 140():170-176. PubMed ID: 28259061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities.
    Xu L; Zhao Z; Wang S; Pan R; Jia Y
    Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thioarsenate Toxicity and Tolerance in the Model System Arabidopsis thaliana.
    Planer-Friedrich B; Kühnlenz T; Halder D; Lohmayer R; Wilson N; Rafferty C; Clemens S
    Environ Sci Technol; 2017 Jun; 51(12):7187-7196. PubMed ID: 28525265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.
    Amenabar MJ; Boyd ES
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The microbial arsenic cycle in Mono Lake, California.
    Oremland RS; Stolz JF; Hollibaugh JT
    FEMS Microbiol Ecol; 2004 Apr; 48(1):15-27. PubMed ID: 19712427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes.
    Oremland RS; Saltikov CW; Stolz JF; Hollibaugh JT
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.