These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25941871)

  • 1. Increased Stimulus Expectancy Triggers Low-frequency Phase Reset during Restricted Vigilance.
    Ten Oever S; van Atteveldt N; Sack AT
    J Cogn Neurosci; 2015 Sep; 27(9):1811-22. PubMed ID: 25941871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations.
    van Diepen RM; Cohen MX; Denys D; Mazaheri A
    J Cogn Neurosci; 2015 Aug; 27(8):1573-86. PubMed ID: 25774428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response.
    Herbst SK; Obleser J
    Neuropsychologia; 2017 Jul; 101():141-152. PubMed ID: 28527912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.
    Toosi T; K Tousi E; Esteky H
    J Neurophysiol; 2017 Aug; 118(2):771-777. PubMed ID: 28515289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli.
    Solís-Vivanco R; Jensen O; Bonnefond M
    J Cogn Neurosci; 2018 Aug; 30(8):1157-1169. PubMed ID: 29762100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory rhythms entrain visual processes in the human brain: evidence from evoked oscillations and event-related potentials.
    Escoffier N; Herrmann CS; Schirmer A
    Neuroimage; 2015 May; 111():267-76. PubMed ID: 25701698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices.
    Pomper U; Keil J; Foxe JJ; Senkowski D
    Hum Brain Mapp; 2015 Aug; 36(8):3246-59. PubMed ID: 26032901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of target localization in visual change detection: an interplay of gating and filtering.
    Schneider D; Wascher E
    Behav Brain Res; 2013 Nov; 256():311-9. PubMed ID: 24001756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power and Phase of Alpha Oscillations Reveal an Interaction between Spatial and Temporal Visual Attention.
    Kizuk SA; Mathewson KE
    J Cogn Neurosci; 2017 Mar; 29(3):480-494. PubMed ID: 28129063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band.
    Meindertsma T; Kloosterman NA; Engel AK; Wagenmakers EJ; Donner TH
    J Neurosci; 2018 Aug; 38(35):7600-7610. PubMed ID: 30030396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of multisensory interplay in enabling temporal expectations.
    Ball F; Michels LE; Thiele C; Noesselt T
    Cognition; 2018 Jan; 170():130-146. PubMed ID: 28992555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does temporal preparation speed up visual processing? Evidence from the N2pc.
    Seibold VC; Rolke B
    Psychophysiology; 2014 Jun; 51(6):529-38. PubMed ID: 24611621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli.
    Nara S; Lizarazu M; Richter CG; Dima DC; Cichy RM; Bourguignon M; Molinaro N
    Neuroimage; 2021 Oct; 239():118314. PubMed ID: 34175428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency cortical oscillations are modulated by temporal prediction and temporal error coding.
    Barne LC; Claessens PME; Reyes MB; Caetano MS; Cravo AM
    Neuroimage; 2017 Feb; 146():40-46. PubMed ID: 27865922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional differences of low- and high-frequency oscillatory dynamics during illusory border perception.
    Bosman CA; Zamorano F; Aboitiz F
    Brain Res; 2010 Mar; 1319():92-102. PubMed ID: 20064488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-related potentials during exposure to aversion and its anticipation: the moderating effect of intolerance of uncertainty.
    Gole M; Schäfer A; Schienle A
    Neurosci Lett; 2012 Jan; 507(2):112-7. PubMed ID: 22172930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing.
    Milton A; Pleydell-Pearce CW
    Neuroimage; 2016 Jun; 133():53-61. PubMed ID: 26924284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal regularity facilitates higher-order sensory predictions in fast auditory sequences.
    Tavano A; Widmann A; Bendixen A; Trujillo-Barreto N; Schröger E
    Eur J Neurosci; 2014 Jan; 39(2):308-18. PubMed ID: 24236753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation.
    Mathewson KE; Prudhomme C; Fabiani M; Beck DM; Lleras A; Gratton G
    J Cogn Neurosci; 2012 Dec; 24(12):2321-33. PubMed ID: 22905825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention mechanisms during predictable and unpredictable threat - A steady-state visual evoked potential approach.
    Wieser MJ; Reicherts P; Juravle G; von Leupoldt A
    Neuroimage; 2016 Oct; 139():167-175. PubMed ID: 27318217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.