BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25942091)

  • 1. Visual detection of trace copper ions based on copper-catalyzed reaction of ascorbic acid with oxygen.
    Hou XY; Chen S; Shun LJ; Zhao YN; Zhang ZW; Long YF; Zhu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():103-8. PubMed ID: 25942091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual determination of trace cysteine based on promoted corrosion of triangular silver nanoplates by sodium thiosulfate.
    Hou XY; Chen S; Tang J; Long YF
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():285-9. PubMed ID: 24556137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates.
    Zhang LL; Ma FF; Kuang YF; Cheng S; Long YF; Xiao QG
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 154():98-102. PubMed ID: 26519916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer.
    Hou X; Chen S; Tang J; Xiong Y; Long Y
    Anal Chim Acta; 2014 May; 825():57-62. PubMed ID: 24767151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions.
    Chaiyo S; Siangproh W; Apilux A; Chailapakul O
    Anal Chim Acta; 2015 Mar; 866():75-83. PubMed ID: 25732695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.
    Lou T; Chen L; Chen Z; Wang Y; Chen L; Li J
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4215-20. PubMed ID: 21970438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual determination of Cu2+ through copper-catalysed in situ formation of Ag nanoparticles.
    Yuan X; Chen Y
    Analyst; 2012 Oct; 137(19):4516-23. PubMed ID: 22890221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine.
    Cui L; Wu J; Li J; Ge Y; Ju H
    Biosens Bioelectron; 2014 May; 55():272-7. PubMed ID: 24389390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of trace copper by solid substrate-room temperature phosphorescence quenching method based on activating effect of alpha,alpha'-dipyridyl on Vitamin C reducing beryllon.
    Ming LJ; Lin X; Lin H; Li PP; Liu HZ; Huang JL; Lin SQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):1046-50. PubMed ID: 16332448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective and sensitive spectrophotometric method to determine trace amounts of copper metal ions using Amaranth food dye.
    El-Zomrawy AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():450-454. PubMed ID: 29894959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolite-modified electrode.
    Rohani T; Taher MA
    Talanta; 2009 May; 78(3):743-7. PubMed ID: 19269422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of trace amounts of copper(II) by using catalytic redox reaction between methylene blue and ascorbic acid.
    Khan MN; Sarwar A
    Anal Sci; 2001 Oct; 17(10):1195-7. PubMed ID: 11990595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid.
    Stepuro II; Piletskaya TP; Stepuro VI; Maskevich SA
    Biochemistry (Mosc); 1997 Dec; 62(12):1409-14. PubMed ID: 9481873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution.
    Chen X; Cheng X; Gooding JJ
    Analyst; 2012 May; 137(10):2338-43. PubMed ID: 22453116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid.
    Su YT; Lan GY; Chen WY; Chang HT
    Anal Chem; 2010 Oct; 82(20):8566-72. PubMed ID: 20873802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles.
    Liu R; Chen Z; Wang S; Qu C; Chen L; Wang Z
    Talanta; 2013 Aug; 112():37-42. PubMed ID: 23708534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric detection of Hg(II) by measurement the color alterations from the "before" and "after" RGB images of etched triangular silver nanoplates.
    Li L; Zhang L; Zhao Y; Chen Z
    Mikrochim Acta; 2018 Mar; 185(4):235. PubMed ID: 29594673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters.
    Yuan Z; Cai N; Du Y; He Y; Yeung ES
    Anal Chem; 2014 Jan; 86(1):419-26. PubMed ID: 24274096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of a complex intermediate in the oxidation of ascorbic acid by the copper (II) ion.
    Hayakawa K; Hayashi Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):395-401. PubMed ID: 24090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.