These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25942405)

  • 41. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM.
    Haider M; Müller H; Uhlemann S; Zach J; Loebau U; Hoeschen R
    Ultramicroscopy; 2008 Feb; 108(3):167-78. PubMed ID: 18060700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.
    Idrissi H; Bollinger C; Boioli F; Schryvers D; Cordier P
    Sci Adv; 2016 Mar; 2(3):e1501671. PubMed ID: 26998522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging active topological defects in carbon nanotubes.
    Suenaga K; Wakabayashi H; Koshino M; Sato Y; Urita K; Iijima S
    Nat Nanotechnol; 2007 Jun; 2(6):358-60. PubMed ID: 18654307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of spatial and temporal resolution on in situ annealing aberration-corrected transmission electron microscopy with proportional-integral-differential controller.
    Shimada Y; Yoshida K; Inoue K; Shiraishi T; Kiguchi T; Nagai Y; Konno TJ
    Microscopy (Oxf); 2019 Jun; 68(3):271-278. PubMed ID: 30843044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A site-specific focused-ion-beam lift-out method for cryo Transmission Electron Microscopy.
    Rubino S; Akhtar S; Melin P; Searle A; Spellward P; Leifer K
    J Struct Biol; 2012 Dec; 180(3):572-6. PubMed ID: 23000702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design, fabrication, and applications of in situ fluid cell TEM.
    Li D; Nielsen MH; De Yoreo JJ
    Methods Enzymol; 2013; 532():147-64. PubMed ID: 24188766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Future developments in instrumentation for electron crystallography.
    Downing KH
    Methods Mol Biol; 2013; 955():353-79. PubMed ID: 23132071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity.
    Helveg S; Kisielowski CF; Jinschek JR; Specht P; Yuan G; Frei H
    Micron; 2015 Jan; 68():176-185. PubMed ID: 25245867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation.
    Massover WH
    Micron; 2011 Feb; 42(2):141-51. PubMed ID: 20598558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Technique for preparation and characterization in cross-section of oral titanium implant surfaces using focused ion beam and transmission electron microscopy.
    Jarmar T; Palmquist A; Brånemark R; Hermansson L; Engqvist H; Thomsen P
    J Biomed Mater Res A; 2008 Dec; 87(4):1003-9. PubMed ID: 18257067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of electron-phonon scattering for determination of temperature variations at high spatial resolution in the transmission electron microscope.
    He L; Hull R
    Nanotechnology; 2012 May; 23(20):205705. PubMed ID: 22543637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmission electron microscopy (TEM) freeze substitution of plant tissues.
    Weigel D; Glazebrook J
    Cold Spring Harb Protoc; 2010 Jul; 2010(7):pdb.prot4959. PubMed ID: 20647352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymer manipulation and nanofabrication in real time using transmission electron microscopy.
    Brown RM; Barnes Z; Sawatari C; Kondo T
    Biomacromolecules; 2007 Jan; 8(1):70-6. PubMed ID: 17206790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope.
    Zaluzec NJ; Burke MG; Haigh SJ; Kulzick MA
    Microsc Microanal; 2014 Apr; 20(2):323-9. PubMed ID: 24564969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical prediction of nanoparticle delivery: from culture media to cell.
    Brown MR; Hondow N; Brydson R; Rees P; Brown AP; Summers HD
    Nanotechnology; 2015 Apr; 26(15):155101. PubMed ID: 25797791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic In-Situ Experimentation on Nanomaterials at the Atomic Scale.
    Xu T; Sun L
    Small; 2015 Jul; 11(27):3247-62. PubMed ID: 25703228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Background, status and future of the Transmission Electron Aberration-corrected Microscope project.
    Dahmen U; Erni R; Radmilovic V; Ksielowski C; Rossell MD; Denes P
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3795-808. PubMed ID: 19687066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the Angstrom scale.
    Gai PL; Yoshida K; Shute C; Jia X; Walsh M; Ward M; Dresselhaus MS; Weertman JR; Boyes ED
    Microsc Res Tech; 2011 Jul; 74(7):664-70. PubMed ID: 20954265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.