These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 25942420)
21. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Wangpu X; Lu J; Xi R; Yue F; Sahni S; Park KC; Menezes S; Huang ML; Zheng M; Kovacevic Z; Richardson DR Mol Pharmacol; 2016 May; 89(5):521-40. PubMed ID: 26895766 [TBL] [Abstract][Full Text] [Related]
22. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Joshi B; Bastiani M; Strugnell SS; Boscher C; Parton RG; Nabi IR J Cell Biol; 2012 Oct; 199(3):425-35. PubMed ID: 23091071 [TBL] [Abstract][Full Text] [Related]
23. Focal adhesion kinase controls prostate cancer progression via intrinsic kinase and scaffolding functions. Figel S; Gelman IH Anticancer Agents Med Chem; 2011 Sep; 11(7):607-16. PubMed ID: 21355844 [TBL] [Abstract][Full Text] [Related]
24. Down-regulation of the cavin family proteins in breast cancer. Bai L; Deng X; Li Q; Wang M; An W; Deli A; Gao Z; Xie Y; Dai Y; Cong YS J Cell Biochem; 2012 Jan; 113(1):322-8. PubMed ID: 21913217 [TBL] [Abstract][Full Text] [Related]
25. Caveolae and scaffold detection from single molecule localization microscopy data using deep learning. Khater IM; Aroca-Ouellette ST; Meng F; Nabi IR; Hamarneh G PLoS One; 2019; 14(8):e0211659. PubMed ID: 31449531 [TBL] [Abstract][Full Text] [Related]
26. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1. Bai L; Deng X; Li J; Wang M; Li Q; An W; A D; Cong YS Cell Res; 2011 Jul; 21(7):1088-101. PubMed ID: 21445100 [TBL] [Abstract][Full Text] [Related]
27. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Hayer A; Stoeber M; Bissig C; Helenius A Traffic; 2010 Mar; 11(3):361-82. PubMed ID: 20070607 [TBL] [Abstract][Full Text] [Related]
28. Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression. Wong TH; Dickson FH; Timmins LR; Nabi IR Cancer Metastasis Rev; 2020 Jun; 39(2):455-469. PubMed ID: 32440845 [TBL] [Abstract][Full Text] [Related]
29. Caveolin-1 promotes mitochondrial health and limits mitochondrial ROS through ROCK/AMPK regulation of basal mitophagic flux. Timmins LR; Ortiz-Silva M; Joshi B; Li YL; Dickson FH; Wong TH; Vandevoorde KR; Nabi IR FASEB J; 2024 Jan; 38(1):e23343. PubMed ID: 38071602 [TBL] [Abstract][Full Text] [Related]
30. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Franzen CA; Amargo E; Todorović V; Desai BV; Huda S; Mirzoeva S; Chiu K; Grzybowski BA; Chew TL; Green KJ; Pelling JC Cancer Prev Res (Phila); 2009 Sep; 2(9):830-41. PubMed ID: 19737984 [TBL] [Abstract][Full Text] [Related]
31. RNA interference reveals a differential role of FAK and Pyk2 in cell migration, leading edge formation and increase in focal adhesions induced by LPA in intestinal epithelial cells. Jiang X; Jacamo R; Zhukova E; Sinnett-Smith J; Rozengurt E J Cell Physiol; 2006 Jun; 207(3):816-28. PubMed ID: 16508947 [TBL] [Abstract][Full Text] [Related]
32. Adhesion-dependent Caveolin-1 Tyrosine-14 phosphorylation is regulated by FAK in response to changing matrix stiffness. Buwa N; Kannan N; Kanade S; Balasubramanian N FEBS Lett; 2021 Feb; 595(4):532-547. PubMed ID: 33314143 [TBL] [Abstract][Full Text] [Related]
33. VEGF Enhances the Migration of MSCs in Neural Differentiation by Regulating Focal Adhesion Turnover. Wang H; Wang X; Qu J; Yue Q; Hu Y; Zhang H J Cell Physiol; 2015 Nov; 230(11):2728-42. PubMed ID: 25820249 [TBL] [Abstract][Full Text] [Related]
34. Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Lagana A; Goetz JG; Cheung P; Raz A; Dennis JW; Nabi IR Mol Cell Biol; 2006 Apr; 26(8):3181-93. PubMed ID: 16581792 [TBL] [Abstract][Full Text] [Related]
35. Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome. Zheng YZ; Boscher C; Inder KL; Fairbank M; Loo D; Hill MM; Nabi IR; Foster LJ Mol Cell Proteomics; 2011 Oct; 10(10):M110.007146. PubMed ID: 21753190 [TBL] [Abstract][Full Text] [Related]
36. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Slack JK; Adams RB; Rovin JD; Bissonette EA; Stoker CE; Parsons JT Oncogene; 2001 Mar; 20(10):1152-63. PubMed ID: 11313859 [TBL] [Abstract][Full Text] [Related]
37. Regulation of focal adhesion targeting and inhibitory functions of the FAK related protein FRNK using a novel estrogen receptor "switch". Martin KH; Boerner SA; Parsons JT Cell Motil Cytoskeleton; 2002 Feb; 51(2):76-88. PubMed ID: 11921165 [TBL] [Abstract][Full Text] [Related]
38. [FAK/c-Src signaling pathway mediates the expression of cell surface HSP90 in cultured human prostate cancer cells and its association with their invasive capability]. Liu XG; Guo Y; Yan ZQ; Guo MY; Zhang ZG; Guo CA Zhonghua Zhong Liu Za Zhi; 2011 May; 33(5):340-4. PubMed ID: 21875461 [TBL] [Abstract][Full Text] [Related]
39. Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease. Low JY; Nicholson HD Cell Tissue Res; 2014 Sep; 357(3):505-13. PubMed ID: 25107607 [TBL] [Abstract][Full Text] [Related]
40. Gleditsia sinensis Thorn Attenuates the Collagen-Based Migration of PC3 Prostate Cancer Cells through the Suppression of α2β1 Integrin Expression. Ryu S; Park KM; Lee SH Int J Mol Sci; 2016 Mar; 17(3):328. PubMed ID: 26950116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]