These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25942538)

  • 1. Histone methylations in heart development, congenital and adult heart diseases.
    Zhang QJ; Liu ZP
    Epigenomics; 2015; 7(2):321-30. PubMed ID: 25942538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone lysine methylation and congenital heart disease: From bench to bedside (Review).
    Yi X; Jiang X; Li X; Jiang DS
    Int J Mol Med; 2017 Oct; 40(4):953-964. PubMed ID: 28902362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of histone methylation and acetylation modifiers in cardiac hypertrophy.
    Qin J; Guo N; Tong J; Wang Z
    J Mol Cell Cardiol; 2021 Oct; 159():120-129. PubMed ID: 34175302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases.
    Akazawa H; Komuro I
    Pharmacol Ther; 2005 Aug; 107(2):252-68. PubMed ID: 15925411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics.
    Jain R; Epstein JA
    Adv Exp Med Biol; 2024; 1441():341-364. PubMed ID: 38884720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Readers, writers, and erasers: chromatin as the whiteboard of heart disease.
    Gillette TG; Hill JA
    Circ Res; 2015 Mar; 116(7):1245-53. PubMed ID: 25814685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics in the heart: the role of histone modifications in cardiac remodelling.
    Tingare A; Thienpont B; Roderick HL
    Biochem Soc Trans; 2013 Jun; 41(3):789-96. PubMed ID: 23697939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy.
    Papait R; Cattaneo P; Kunderfranco P; Greco C; Carullo P; Guffanti A; ViganĂ² V; Stirparo GG; Latronico MV; Hasenfuss G; Chen J; Condorelli G
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20164-9. PubMed ID: 24284169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial (iso)enzyme activities, DNA concentration and nuclear polyploidy in hearts of patients operated upon for congenital heart disease, and in normal and hypertrophic adult human hearts at autopsy.
    van der Laarse A; Hollaar L; Vliegen HW; Egas JM; Dijkshoorn NJ; Cornelisse CJ; Bogers AJ; Quaegebeur JM
    Eur J Clin Invest; 1989 Apr; 19(2):192-200. PubMed ID: 2525096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin-mediated cardiac defects in mouse is associated with a reduced histone H3 acetylation and reduced expression of cardiac transcription factors.
    Sun H; Zhu J; Lu T; Huang X; Tian J
    Cardiovasc Toxicol; 2014 Jun; 14(2):162-9. PubMed ID: 24323078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress in modification of histone lysine methylation and congenital heart defect].
    Sheng W; Ma D
    Yi Chuan; 2010 Jul; 32(7):650-5. PubMed ID: 20650844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation.
    Olson EN; Backs J; McKinsey TA
    Novartis Found Symp; 2006; 274():3-12; discussion 13-9, 152-5, 272-6. PubMed ID: 17019803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts.
    Han P; Li W; Yang J; Shang C; Lin CH; Cheng W; Hang CT; Cheng HL; Chen CH; Wong J; Xiong Y; Zhao M; Drakos SG; Ghetti A; Li DY; Bernstein D; Chen HS; Quertermous T; Chang CP
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1772-81. PubMed ID: 26952936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac-specific developmental and epigenetic functions of Jarid2 during embryonic development.
    Cho E; Mysliwiec MR; Carlson CD; Ansari A; Schwartz RJ; Lee Y
    J Biol Chem; 2018 Jul; 293(30):11659-11673. PubMed ID: 29891551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of demethylases in cardiac development and disease.
    Davis K; Azarcon P; Hickenlooper S; Bia R; Horiuchi E; Szulik MW; Franklin S
    J Mol Cell Cardiol; 2021 Sep; 158():89-100. PubMed ID: 34081951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Myocardial metabolism in hypertrophy and insufficiency of the myocardium].
    Ito Y
    Nihon Ishikai Zasshi; 1970 Sep; 64(6):741-52. PubMed ID: 4248252
    [No Abstract]   [Full Text] [Related]  

  • 18. Making or breaking the heart: from lineage determination to morphogenesis.
    Srivastava D
    Cell; 2006 Sep; 126(6):1037-48. PubMed ID: 16990131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic mechanisms in cardiac development and disease.
    Vallaster M; Vallaster CD; Wu SM
    Acta Biochim Biophys Sin (Shanghai); 2012 Jan; 44(1):92-102. PubMed ID: 22194017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.
    Papait R; Serio S; Pagiatakis C; Rusconi F; Carullo P; Mazzola M; Salvarani N; Miragoli M; Condorelli G
    Circulation; 2017 Sep; 136(13):1233-1246. PubMed ID: 28778944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.