These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25942635)

  • 1. The histone H3 N-terminal tail: a computational analysis of the free energy landscape and kinetics.
    Zheng Y; Cui Q
    Phys Chem Chem Phys; 2015 May; 17(20):13689-98. PubMed ID: 25942635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy landscape analyses of disordered histone tails reveal special organization of their conformational dynamics.
    Potoyan DA; Papoian GA
    J Am Chem Soc; 2011 May; 133(19):7405-15. PubMed ID: 21517079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of epigenetic modifications on the secondary structures and possible binding positions of the N-terminal tail of histone H3 in the nucleosome: a computational study.
    du Preez LL; Patterton HG
    J Mol Model; 2017 Apr; 23(4):137. PubMed ID: 28353152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structures of the core histone N-terminal tails: their role in regulating chromatin structure.
    du Preez LL; Patterton HG
    Subcell Biochem; 2013; 61():37-55. PubMed ID: 23150245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Ensemble of CD4 Cytoplasmic Tail (402-419) Reveals a Nearly Flat Free-Energy Landscape with Local α-Helical Order in Aqueous Solution.
    Ahalawat N; Arora S; Murarka RK
    J Phys Chem B; 2015 Aug; 119(34):11229-42. PubMed ID: 26132982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation.
    Roccatano D; Barthel A; Zacharias M
    Biopolymers; 2007 Apr 5-15; 85(5-6):407-21. PubMed ID: 17252562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles.
    Sivolob A; De Lucia F; Alilat M; Prunell A
    J Mol Biol; 2000 Jan; 295(1):55-69. PubMed ID: 10623508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.
    Yang D; Arya G
    Phys Chem Chem Phys; 2011 Feb; 13(7):2911-21. PubMed ID: 21157623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase structure of the histone multimers characterized by ion mobility mass spectrometry and molecular dynamics simulation.
    Saikusa K; Fuchigami S; Takahashi K; Asano Y; Nagadoi A; Tachiwana H; Kurumizaka H; Ikeguchi M; Nishimura Y; Akashi S
    Anal Chem; 2013 Apr; 85(8):4165-71. PubMed ID: 23485128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.
    Hamiche A; Kang JG; Dennis C; Xiao H; Wu C
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14316-21. PubMed ID: 11724935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone structures: targets for modifications by molecular assemblies.
    Nicholson JM; Wood CM; Reynolds CD; Brown A; Lambert SJ; Chantalat L; Baldwin JP
    Ann N Y Acad Sci; 2004 Dec; 1030():644-55. PubMed ID: 15659848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of posttranslational modifications on the structure and dynamics of histone H3 N-terminal Peptide.
    Liu H; Duan Y
    Biophys J; 2008 Jun; 94(12):4579-85. PubMed ID: 18192367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone conformational preferences of an intrinsically disordered protein in solution.
    Espinoza-Fonseca LM; Ilizaliturri-Flores I; Correa-Basurto J
    Mol Biosyst; 2012 Jun; 8(6):1798-805. PubMed ID: 22506277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessibility and structural role of histone domains in chromatin. biophysical and immunochemical studies of progressive digestion with immobilized proteases.
    Hacques MF; Muller S; De Murcia G; Van Regenmortel MH; Marion C
    J Biomol Struct Dyn; 1990 Dec; 8(3):619-41. PubMed ID: 2100522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling H3 histone N-terminal tail and linker DNA interactions.
    La Penna G; Furlan S; Perico A
    Biopolymers; 2006 Oct; 83(2):135-47. PubMed ID: 16691563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of SIN mutations and histone variants in human nucleosomes reveal altered protein-DNA and core histone interactions.
    Vijayalakshmi M; Shivashankar GV; Sowdhamini R
    J Biomol Struct Dyn; 2007 Dec; 25(3):207-18. PubMed ID: 17937483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis.
    Altis A; Otten M; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2008 Jun; 128(24):245102. PubMed ID: 18601386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.