These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25942680)

  • 21. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.
    Khare KS; Khabaz F; Khare R
    ACS Appl Mater Interfaces; 2014 May; 6(9):6098-110. PubMed ID: 24606164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring the mechanical properties of polymer nanocomposites via interfacial engineering.
    Gao N; Hou G; Liu J; Shen J; Gao Y; Lyulin AV; Zhang L
    Phys Chem Chem Phys; 2019 Aug; 21(34):18714-18726. PubMed ID: 31424061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks.
    Zheng Y; Wang R; Dong X; Wu L; Zhang X
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28103-28111. PubMed ID: 30052027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles.
    Hu F; Nie Y; Li F; Liu J; Gao Y; Wang W; Zhang L
    Phys Chem Chem Phys; 2019 May; 21(21):11320-11328. PubMed ID: 31106789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites.
    Blake R; Gun'ko YK; Coleman J; Cadek M; Fonseca A; Nagy JB; Blau WJ
    J Am Chem Soc; 2004 Aug; 126(33):10226-7. PubMed ID: 15315418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crazing of nanocomposites with polymer-tethered nanoparticles.
    Meng D; Kumar SK; Ge T; Robbins MO; Grest GS
    J Chem Phys; 2016 Sep; 145(9):094902. PubMed ID: 27609009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites.
    Duong HM; Papavassiliou DV; Mullen KJ; Maruyama S
    Nanotechnology; 2008 Feb; 19(6):065702. PubMed ID: 21730709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation.
    Shen J; Liu J; Gao Y; Cao D; Zhang L
    Langmuir; 2011 Dec; 27(24):15213-22. PubMed ID: 22040300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.
    Liu F; Liu X; Hu N; Ning H; Atobe S; Yan C; Mo F; Fu S; Zhang J; Wang Y; Mu X
    Sci Rep; 2017 Oct; 7(1):14700. PubMed ID: 29089620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice dynamics of carbon chain inside a carbon nanotube.
    Guo ZX; Ding JW; Xiao Y; Mao YL
    J Phys Chem B; 2006 Nov; 110(43):21803-7. PubMed ID: 17064143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.
    Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification.
    Liao Q; Zeng L; Liu Z; Liu W
    Sci Rep; 2016 Oct; 6():34999. PubMed ID: 27713563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulations of nanocomposites based on poly(epsilon-caprolactone) grafted on montmorillonite clay.
    Gardebien F; Brédas JL; Lazzaroni R
    J Phys Chem B; 2005 Jun; 109(25):12287-96. PubMed ID: 16852516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusion of polymer-grafted nanoparticles in a homopolymer matrix.
    Medidhi KR; Padmanabhan V
    J Chem Phys; 2019 Jan; 150(4):044905. PubMed ID: 30709304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study.
    Haghighi S; Ansari R; Ajori S
    J Mol Model; 2019 Mar; 25(4):105. PubMed ID: 30927080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transversal thermal transport in single-walled carbon nanotube bundles: influence of axial stretching and intertube bonding.
    Gharib-Zahedi MR; Tafazzoli M; Böhm MC; Alaghemandi M
    J Chem Phys; 2013 Nov; 139(18):184704. PubMed ID: 24320288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts.
    Mekki A; Samanta S; Singh A; Salmi Z; Mahmoud R; Chehimi MM; Aswal DK
    J Colloid Interface Sci; 2014 Mar; 418():185-92. PubMed ID: 24461834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.