These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25942695)
21. Use of fly ash for remediation of metals polluted sediment--green remediation. Tomasevic DD; Dalmacija MB; Prica MDj; Dalmacija BD; Kerkez DV; Bečelić-Tomin MR; Roncevic SD Chemosphere; 2013 Sep; 92(11):1490-7. PubMed ID: 23642638 [TBL] [Abstract][Full Text] [Related]
22. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil. Yang Z; Zhang K; Li X; Ren S; Li P Environ Sci Pollut Res Int; 2023 Mar; 30(13):38185-38201. PubMed ID: 36576635 [TBL] [Abstract][Full Text] [Related]
23. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Wang L; Tsang DCW; Poon CS Chemosphere; 2015 Mar; 122():257-264. PubMed ID: 25522855 [TBL] [Abstract][Full Text] [Related]
24. Leaching of elements from cement activated fly ash and slag amended soils. Mahedi M; Cetin B Chemosphere; 2019 Nov; 235():565-574. PubMed ID: 31276869 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of Calcium Polysulfide as a Reducing Agent for the Restoration of a Cr(VI)-Contaminated Aquifer. Mpouras T; Papassiopi N; Lagkouvardos K; Mystrioti C; Dermatas D Bull Environ Contam Toxicol; 2021 Mar; 106(3):435-440. PubMed ID: 32462246 [TBL] [Abstract][Full Text] [Related]
26. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. Wang D; Li G; Qin S; Tao W; Gong S; Wang J Ecotoxicol Environ Saf; 2021 Jan; 208():111734. PubMed ID: 33396063 [TBL] [Abstract][Full Text] [Related]
27. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil]. Hao HZ; Chen TB; Jin MG; Lei M; Liu CW; Zu WP; Huang LM Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):816-24. PubMed ID: 21657043 [TBL] [Abstract][Full Text] [Related]
28. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil. Zhongping Y; Yao W; Xuyong L; Shupei R; Hui X; Jiazhuo C Environ Sci Pollut Res Int; 2021 Jul; 28(28):37413-37423. PubMed ID: 33715119 [TBL] [Abstract][Full Text] [Related]
29. [Stabilization and long-term effect of chromium contaminated soil]. Wang J; Luo QS; Zhang CB; Tan L; Li X Huan Jing Ke Xue; 2013 Oct; 34(10):4036-41. PubMed ID: 24364328 [TBL] [Abstract][Full Text] [Related]
30. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528 [TBL] [Abstract][Full Text] [Related]
31. Quantifying the environmental impact of As and Cr in stabilized/solidified materials. Dalmacija M; Prica M; Dalmacija B; Roncevic S; Klasnja M Sci Total Environ; 2011 Dec; 412-413():366-74. PubMed ID: 22044582 [TBL] [Abstract][Full Text] [Related]
32. Immobilization of chromium ore processing residue by alkali-activated composite binders and leaching characteristics. Peng G; Zhang P; Zeng L; Yu L; Li D Environ Sci Pollut Res Int; 2023 Jun; 30(27):71154-71170. PubMed ID: 37162678 [TBL] [Abstract][Full Text] [Related]
33. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash. Li J; Poon CS Chemosphere; 2017 Apr; 173():143-152. PubMed ID: 28107712 [TBL] [Abstract][Full Text] [Related]
34. Microwave-enhanced reductive immobilization of high concentrations of chromium in a field soil using iron polysulfide. Wang J; Liu X; Zhu Z; Yuan L; Zhao D; Deng H; Lin Z J Hazard Mater; 2021 Sep; 418():126293. PubMed ID: 34118547 [TBL] [Abstract][Full Text] [Related]
35. Treatability of chromite ore processing waste by leaching. Unlü K; Haskök S Waste Manag Res; 2001 Jun; 19(3):217-28. PubMed ID: 11699856 [TBL] [Abstract][Full Text] [Related]
36. Remediation of chromium-contaminated soil using delaminated layered double hydroxides with different divalent metals. Xu S; Zhang L; Zhao J; Cheng J; Yu Q; Zhang S; Zhao J; Qiu X Chemosphere; 2020 Sep; 254():126879. PubMed ID: 32361545 [TBL] [Abstract][Full Text] [Related]
37. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. Dermatas D; Moon DH; Menounou N; Meng X; Hires R J Hazard Mater; 2004 Dec; 116(1-2):25-38. PubMed ID: 15561360 [TBL] [Abstract][Full Text] [Related]
38. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag]. Chen ZL; Li JC; Wang BY; Fan LT; Shen JM Huan Jing Ke Xue; 2015 Aug; 36(8):3026-31. PubMed ID: 26592036 [TBL] [Abstract][Full Text] [Related]
39. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide. Li J; Chen Z; Shen J; Wang B; Fan L Chemosphere; 2015 Sep; 134():159-65. PubMed ID: 25929874 [TBL] [Abstract][Full Text] [Related]
40. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. Moon DH; Dermatas D J Hazard Mater; 2007 Mar; 141(2):388-94. PubMed ID: 16822609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]