These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 25942803)

  • 1. Structural design of microfluidic channels for blood plasma separation.
    Zhang J; Wei X; Xue X; Jiang Z
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7419-26. PubMed ID: 25942803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in cell capture throughput using parallel bioactivated microfluidic channels.
    Javanmard M; Babrzadeh F; Nyrén P; Davis RW
    Biomed Microdevices; 2012 Aug; 14(4):625-9. PubMed ID: 22367556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Blood Plasma Extraction in a Dimension-Confined Double-Spiral Channel.
    Shen S; Bai H; Wang X; Chan H; Niu Y; Li W; Tian C; Li X
    Anal Chem; 2023 Nov; 95(45):16649-16658. PubMed ID: 37917001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled viable release of selectively captured label-free cells in microchannels.
    Gurkan UA; Anand T; Tas H; Elkan D; Akay A; Keles HO; Demirci U
    Lab Chip; 2011 Dec; 11(23):3979-89. PubMed ID: 22002065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuous-flow, microfluidic fraction collection device.
    Baker CA; Roper MG
    J Chromatogr A; 2010 Jul; 1217(28):4743-8. PubMed ID: 20730040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pronounced effect of lamination on plasma separation from whole blood by microfluidic paper-based analytical devices.
    Ardakani F; Hemmateenejad B
    Anal Chim Acta; 2023 Oct; 1279():341767. PubMed ID: 37827667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue.
    Qiu X; Huang JH; Westerhof TM; Lombardo JA; Henrikson KM; Pennell M; Pourfard PP; Nelson EL; Nath P; Haun JB
    Sci Rep; 2018 Feb; 8(1):2774. PubMed ID: 29426941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-Rate-Insensitive Plasma Extraction by the Stabilization and Acceleration of Secondary Flow in the Ultralow Aspect Ratio Spiral Channel.
    Shen S; Zhang Y; Yang K; Chan H; Li W; Li X; Tian C; Niu Y
    Anal Chem; 2023 Dec; 95(49):18278-18286. PubMed ID: 38016025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion-based high-throughput label-free cell sorting using ridged microfluidic channels.
    Chrit FE; Li P; Sulchek T; Alexeev A
    Soft Matter; 2024 Feb; 20(8):1913-1921. PubMed ID: 38323349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Nanotexture on Electrical Profiling of Single Tumor Cell and Detection of Cancer from Blood in Microfluidic Channels.
    Islam M; Bellah MM; Sajid A; Hasan MR; Kim YT; Iqbal SM
    Sci Rep; 2015 Sep; 5():13031. PubMed ID: 26373820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Physics and Manipulation of Dean Vortices in Single- and Two-Phase Flow in Curved Microchannels: A Review.
    Saffar Y; Kashanj S; Nobes DS; Sabbagh R
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection.
    Ng E; Chen K; Hang A; Syed A; Zhang JX
    Ann Biomed Eng; 2016 Apr; 44(4):847-62. PubMed ID: 26692080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving dynamics of inertial migration in straight and curved microchannels by direct cross-sectional imaging.
    Zhou J; Papautsky I
    Biomicrofluidics; 2021 Jan; 15(1):014101. PubMed ID: 33425090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms.
    Wang Y; Nunna BB; Talukder N; Etienne EE; Lee ES
    Bioengineering (Basel); 2021 Jul; 8(7):. PubMed ID: 34356201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Precapillary Flow Patterns for Enhancing Blood Plasma Separation: A Preliminary Study.
    Namgung B; Tan JK; Wong PA; Park SY; Leo HL; Kim S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption.
    Rafeie M; Hosseinzadeh S; Taylor RA; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034117. PubMed ID: 31431813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics geometries involved in effective blood plasma separation.
    Maurya A; Murallidharan JS; Sharma A; Agarwal A
    Microfluid Nanofluidics; 2022; 26(10):73. PubMed ID: 36090664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of in-plane and out-of-plane bifurcated microfluidic channels on the flow of aggregating red blood cells.
    Gholivand A; Korculanin O; Dahlhoff K; Babaki M; Dickscheid T; Lettinga MP
    Lab Chip; 2024 Apr; 24(8):2317-2326. PubMed ID: 38545688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Importance of Dean Flow in Microfluidic Nanoparticle Synthesis: A ZIF-8 Case Study.
    Yu X; Andreo J; Walden M; Del Campo JF; Basabe-Desmonts L; Benito-Lopez F; Burg TP; Wuttke S
    Small Methods; 2024 Jan; 8(1):e2300603. PubMed ID: 37772633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation microfluidic point-of-care diagnostics.
    Ng AH; Wheeler AR
    Clin Chem; 2015 Oct; 61(10):1233-4. PubMed ID: 25943113
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.