These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25942806)

  • 1. Dissipation factor of acrylic dielectric elastomer--an experimental study.
    Sahu RK; Pramanik B; Patra K; Bhaumik S; Pandey AK; Setua DK
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7439-44. PubMed ID: 25942806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-lnspired dielectric elastomer actuator with AgNWs coated on carbon black electrode.
    Jun KW; Lee JM; Lee JY; Ohl IK
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7483-7. PubMed ID: 25942813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the electromechanical properties of dielectric elastomers subjected to pre-stressing.
    Jiang L; Betts A; Kennedy D; Jerrams S
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():754-760. PubMed ID: 25687005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Stretchable Metallic Springs as Compliant Electrodes for Cylindrical Dielectric Elastomer Actuators (DEAs).
    Liu CH; Lin PW; Chen JA; Lee YT; Chang YM
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humidity Effect on Dynamic Electromechanical Properties of Polyacrylic Dielectric Elastomer: An Experimental Study.
    Zuo Y; Ding Y; Zhang J; Zhu M; Liu L; Zhao J
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33806452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200.
    Hubertus J; Neu J; Croce S; Rizzello G; Seelecke S; Schultes G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39894-39904. PubMed ID: 34375081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semicylindrical acoustic transducer from a dielectric elastomer film with compliant electrodes.
    Sugimoto T; Ono K; Ando A; Morita Y; Hosoda K; Ishii D
    J Acoust Soc Am; 2011 Aug; 130(2):744-52. PubMed ID: 21877790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An instrumentation amplifier as a front-end for a four-electrode bioimpedance measurement.
    Zagar T; Krizaj D
    Physiol Meas; 2007 Aug; 28(8):N57-65. PubMed ID: 17664668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication Process of Silicone-based Dielectric Elastomer Actuators.
    Rosset S; Araromi OA; Schlatter S; Shea HR
    J Vis Exp; 2016 Feb; (108):e53423. PubMed ID: 26863283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Strategies for Improved Dielectric Elastomer Electrical Breakdown Strengths.
    Yu L; Skov AL
    Macromol Rapid Commun; 2018 Jul; ():e1800383. PubMed ID: 30039539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress measurements of planar dielectric elastomer actuators.
    Osmani B; Aeby EA; Müller B
    Rev Sci Instrum; 2016 May; 87(5):053901. PubMed ID: 27250436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes.
    Lee YR; Kwon H; Lee DH; Lee BY
    Soft Matter; 2017 Sep; 13(37):6390-6395. PubMed ID: 28868554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.
    Ning N; Wang Z; Yao Y; Zhang L; Tian M
    Carbohydr Polym; 2015 Oct; 130():262-7. PubMed ID: 26076625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.
    Pourazadi S; Ahmadi S; Menon C
    Biomed Eng Online; 2015 Nov; 14():103. PubMed ID: 26541150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Current State of Silicone-Based Dielectric Elastomer Transducers.
    Madsen FB; Daugaard AE; Hvilsted S; Skov AL
    Macromol Rapid Commun; 2016 Mar; 37(5):378-413. PubMed ID: 26773231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the Complex Prebreakdown Actuation of Silicone Elastomers and its Influence on Breakdown Behavior.
    Vaicekauskiate J; Yu L; Skov AL
    ACS Omega; 2020 Aug; 5(30):18584-18593. PubMed ID: 32775860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial muscles based on synthetic dielectric elastomers.
    Pei Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6826-9. PubMed ID: 19964914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lightweight push-pull acoustic transducer composed of a pair of dielectric elastomer films.
    Sugimoto T; Ando A; Ono K; Morita Y; Hosoda K; Ishii D; Nakamura K
    J Acoust Soc Am; 2013 Nov; 134(5):EL432-7. PubMed ID: 24181987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright Stretchable Electroluminescent Devices based on Silver Nanowire Electrodes and High-k Thermoplastic Elastomers.
    Zhou Y; Cao S; Wang J; Zhu H; Wang J; Yang S; Wang X; Kong D
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44760-44767. PubMed ID: 30484303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.