These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25942827)

  • 1. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials.
    Kim EJ; Kim WG; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys.
    Kim HJ; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8405-10. PubMed ID: 25958536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.
    Kim ES; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion behavior of nanotubular oxide on the Ti-29Nb-xZr alloy.
    Kim JU; Kim BH; Lee K; Choe HC; Ko YM
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1636-9. PubMed ID: 21456255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials.
    Moon BH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7428-32. PubMed ID: 22103212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Characteristics of Nanotube Formed Ti–25Nb–xZr Alloys.
    Byeon IS; Choe HC
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2655-660. PubMed ID: 29664261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, structural, microstructural, mechanical and cytotoxic characterization of as-cast Ti-25Ta-Zr alloys.
    Kuroda PAB; de Freitas Quadros F; Sousa KDSJ; Donato TAG; de Araújo RO; Grandini CR
    J Mater Sci Mater Med; 2020 Jan; 31(2):19. PubMed ID: 31965338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytocompatibility, stability and osteogenic activity of powder metallurgy Ta-xZr alloys as dental implant materials.
    Ou P; Liu J; Hao C; He R; Chang L; Ruan J
    J Biomater Appl; 2021 Feb; 35(7):790-798. PubMed ID: 32854569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotube Nucleation Phenomena of Titanium Dioxide on the Ti-6Al-4V Alloy Using Anodic Titanium Oxide Technique.
    Kim HJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):467-70. PubMed ID: 26328383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Control of Nanotube Morphology Using Various Factors for Dental Implant.
    Kim ES; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):181-4. PubMed ID: 26328325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.
    Kim EJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1679-83. PubMed ID: 23755573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytocompatibility of Ti-xZr alloys as dental implant materials.
    Ou P; Hao C; Liu J; He R; Wang B; Ruan J
    J Mater Sci Mater Med; 2021 Apr; 32(5):50. PubMed ID: 33891193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wear resistance of experimental titanium alloys for dental applications.
    Faria AC; Rodrigues RC; Claro AP; da Gloria Chiarello de Mattos M; Ribeiro RF
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1873-9. PubMed ID: 22098886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys.
    Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotube morphology and corrosion resistance of a low rigidity quaternary titanium alloy for biomedical applications.
    Saji VS; Choe HC; Ko YM; Ahn H
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4635-9. PubMed ID: 21128470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface observation of nanotube/micropit formed Ti-Nb-xZr alloy for biocompatibility.
    Jeong YH; Ban JS; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1706-9. PubMed ID: 23755577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotube Morphology Changes of Ti-
    Cho HR; Choe HC
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4807-4812. PubMed ID: 33691870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.
    Kim JU; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1876-9. PubMed ID: 23755610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.