These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25942831)

  • 1. Application of nonlocal models to nano beams. Part I: Axial length scale effect.
    Kim JS
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7592-6. PubMed ID: 25942831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of nonlocal models to nano beams. Part II: Thickness length scale effect.
    Kim JS
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7597-602. PubMed ID: 25942832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes.
    Wang Q; Wang CM
    Nanotechnology; 2007 Feb; 18(7):075702. PubMed ID: 21730510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small length scale effect for a non-local cantilever beam: a paradox solved.
    Challamel N; Wang CM
    Nanotechnology; 2008 Aug; 19(34):345703. PubMed ID: 21730658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of Space-Fractional Euler-Bernoulli and Timoshenko Beams.
    Stempin P; Sumelka W
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33916946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastostatics of Bernoulli-Euler Beams Resting on Displacement-Driven Nonlocal Foundation.
    Vaccaro MS; Pinnola FP; Marotti de Sciarra F; Barretta R
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation.
    Akbarshahi A; Rajabpour A; Ghadiri M; Barooti MM
    J Mol Model; 2019 May; 25(5):141. PubMed ID: 31044274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal nonlocal scale effect on static bending of single-layer MoS
    Li M; Huang H; Tu L; Wang W; Li P; Lu Y
    Nanotechnology; 2017 May; 28(21):215706. PubMed ID: 28333686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory.
    Ducottet S; El Baroudi A
    Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory.
    Eshraghi I; Jalali SK; Pugno NM
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading.
    Heireche H; Tounsi A; Benzair A
    Nanotechnology; 2008 May; 19(18):185703. PubMed ID: 21825699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.
    Wang X; Hopkins C
    J Acoust Soc Am; 2016 Oct; 140(4):2312. PubMed ID: 27794356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory.
    Gao Y; Lei FM
    Biochem Biophys Res Commun; 2009 Sep; 387(3):467-71. PubMed ID: 19615341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model.
    Adali S
    Nano Lett; 2009 May; 9(5):1737-41. PubMed ID: 19344117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-Based FEM in the Problem of Bending of Euler-Bernoulli and Timoshenko Beams Resting on Elastic Foundation.
    Więckowski Z; Świątkiewicz P
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual mesh finite domain method for the analysis of functionally graded beams.
    Reddy JN; Nampally P
    Compos Struct; 2020 Nov; 251():112648. PubMed ID: 32834325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.