BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25943095)

  • 1. CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining.
    Bachu R; Bergareche I; Chasin LA
    Biotechnol Bioeng; 2015 Oct; 112(10):2154-62. PubMed ID: 25943095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.
    Vartak SV; Raghavan SC
    FEBS J; 2015 Nov; 282(22):4289-94. PubMed ID: 26290158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
    Jiang W; Marraffini LA
    Annu Rev Microbiol; 2015; 69():209-28. PubMed ID: 26209264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9.
    Tu JL; Bai XY; Xu YL; Li N; Xu JW
    Appl Environ Microbiol; 2021 Nov; 87(23):e0151021. PubMed ID: 34524900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Biosynthesis Performance of Heterologous Proteins in CHO-K1 Cells Using CRISPR-Cas9.
    Wang W; Zheng W; Hu F; He X; Wu D; Zhang W; Liu H; Ma X
    ACS Synth Biol; 2018 May; 7(5):1259-1268. PubMed ID: 29683658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas-mediated targeted genome editing in human cells.
    Yang L; Mali P; Kim-Kiselak C; Church G
    Methods Mol Biol; 2014; 1114():245-67. PubMed ID: 24557908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum.
    Liu K; Gao Y; Li ZH; Liu M; Wang FQ; Wei DZ
    N Biotechnol; 2022 Jan; 66():61-69. PubMed ID: 34653700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency nonhomologous insertion of a foreign gene into the herpes simplex virus genome.
    Gong Y; Bi Y; Li Z; Li Y; Yao Y; Long Q; Pu T; Chen C; Liu T; Dong S; Cun W
    J Gen Virol; 2020 Sep; 101(9):982-996. PubMed ID: 32602833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.
    Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE
    Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.
    Ma Y; Chen W; Zhang X; Yu L; Dong W; Pan S; Gao S; Huang X; Zhang L
    RNA Biol; 2016 Jul; 13(7):605-12. PubMed ID: 27163284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair.
    Gutschner T; Haemmerle M; Genovese G; Draetta GF; Chin L
    Cell Rep; 2016 Feb; 14(6):1555-1566. PubMed ID: 26854237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.
    Zhu L; Mon H; Xu J; Lee JM; Kusakabe T
    Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of double-strand break repair by nonhomologous DNA end joining in cell-free extracts from mammalian cells.
    Pfeiffer P; Odersky A; Goedecke W; Kuhfittig-Kulle S
    Methods Mol Biol; 2014; 1105():565-85. PubMed ID: 24623253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.