BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25943248)

  • 1. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides.
    Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I
    Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine.
    Teodorović I; Knežević V; Tunić T; Cučak M; Lečić JN; Leovac A; Tumbas II
    Environ Toxicol Chem; 2012 Feb; 31(2):417-26. PubMed ID: 22095561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing.
    Knauer K; Mohr S; Feiler U
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity.
    Mohr S; Schott J; Maletzki D; Hünken A
    Ecotoxicol Environ Saf; 2013 Nov; 97():32-9. PubMed ID: 23928028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-laboratory trial of a standardized sediment contact test with the aquatic plant Myriophyllum aquaticum (ISO 16191).
    Feiler U; Ratte M; Arts G; Bazin C; Brauer F; Casado C; Dören L; Eklund B; Gilberg D; Grote M; Gonsior G; Hafner C; Kopf W; Lemnitzer B; Liedtke A; Matthias U; Okos E; Pandard P; Scheerbaum D; Schmitt-Jansen M; Stewart K; Teodorovic I; Wenzel A; Pluta HJ
    Environ Toxicol Chem; 2014 Mar; 33(3):662-70. PubMed ID: 24375816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field level evaluation and risk assessment of the toxicity of dichloroacetic acid to the aquatic macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Ecotoxicol Environ Saf; 2003 May; 55(1):46-63. PubMed ID: 12706393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms.
    Wieczorek MV; Bakanov N; Lagadic L; Bruns E; Schulz R
    Environ Toxicol Chem; 2017 Apr; 36(4):1090-1100. PubMed ID: 27696510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?
    Nuttens A; Chatellier S; Devin S; Guignard C; Lenouvel A; Gross EM
    Aquat Toxicol; 2016 Aug; 177():355-64. PubMed ID: 27371928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR
    Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides.
    Park J; Brown MT; Depuydt S; Kim JK; Won DS; Han T
    Environ Pollut; 2017 Jan; 220(Pt B):818-827. PubMed ID: 27810110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Environ Toxicol Chem; 2001 Dec; 20(12):2758-67. PubMed ID: 11764159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toxicokinetic and toxicodynamic modeling approach using Myriophyllum spicatum to predict effects caused by short-term exposure to a sulfonylurea.
    Heine S; Schild F; Schmitt W; Krebber R; Görlitz G; Preuss TG
    Environ Toxicol Chem; 2016 Feb; 35(2):376-84. PubMed ID: 26174603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of linuron on a rooted aquatic macrophyte in sediment-dosed test systems.
    Burešová H; Crum SJ; Belgers JD; Adriaanse PI; Arts GH
    Environ Pollut; 2013 Apr; 175():117-24. PubMed ID: 23376542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products.
    Hommen U; Schmitt W; Heine S; Brock TC; Duquesne S; Manson P; Meregalli G; Ochoa-Acuña H; van Vliet P; Arts G
    Integr Environ Assess Manag; 2016 Jan; 12(1):82-95. PubMed ID: 26420056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions.
    Hanson ML; Sibley PK; Ellis DA; Fineberg NA; Mabury SA; Solomon KR; Muir DC
    Aquat Toxicol; 2002 Mar; 56(4):241-55. PubMed ID: 11856574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides.
    Fairchild JF; Ruessler DS; Haverland PS; Carlson AR
    Arch Environ Contam Toxicol; 1997 May; 32(4):353-7. PubMed ID: 9175499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceria maxima as new test species for the EU risk assessment for herbicides: a microcosm study.
    Mohr S; Schott J; Hoenemann L; Feibicke M
    Ecotoxicology; 2015 Mar; 24(2):309-20. PubMed ID: 25380672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of different type sediments on transformation of phosphorus forms and growth of Myriophyllum spicatum].
    Wang SR; Zhao HC; Yang SW; Yi WL; Jin XC
    Huan Jing Ke Xue; 2010 Nov; 31(11):2666-72. PubMed ID: 21250449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum.
    Caillat A; Ciffroy P; Grote M; Rigaud S; Garnier JM
    Environ Toxicol Chem; 2014 Feb; 33(2):278-85. PubMed ID: 24122927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions.
    Giddings JM; Arts G; Hommen U
    Integr Environ Assess Manag; 2013 Apr; 9(2):308-18. PubMed ID: 23229339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.