These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25943522)

  • 1. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop.
    Cowling WA; Stefanova KT; Beeck CP; Nelson MN; Hargreaves BL; Sass O; Gilmour AR; Siddique KH
    G3 (Bethesda); 2015 May; 5(7):1419-28. PubMed ID: 25943522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of Selection in Early Generations of Field Pea Breeding Increases by Exploiting the Information Contained in Correlated Traits.
    Castro-Urrea FA; Urricariet MP; Stefanova KT; Li L; Moss WM; Guzzomi AL; Sass O; Siddique KHM; Cowling WA
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture.
    Vallejo RL; Leeds TD; Gao G; Parsons JE; Martin KE; Evenhuis JP; Fragomeni BO; Wiens GD; Palti Y
    Genet Sel Evol; 2017 Feb; 49(1):17. PubMed ID: 28148220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL.
    Timmerman-Vaughan GM; Moya L; Frew TJ; Murray SR; Crowhurst R
    Theor Appl Genet; 2016 May; 129(5):879-96. PubMed ID: 26801334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association study for morphological traits and resistance to Peryonella pinodes in the USDA pea single plant plus collection.
    Martins LB; Balint-Kurti P; Reberg-Horton SC
    G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35792880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects.
    Gamal El-Dien O; Ratcliffe B; Klápště J; Porth I; Chen C; El-Kassaby YA
    G3 (Bethesda); 2016 Jan; 6(3):743-53. PubMed ID: 26801647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection.
    Cowling WA; Li L; Siddique KHM; Henryon M; Berg P; Banks RG; Kinghorn BP
    J Exp Bot; 2017 Apr; 68(8):1927-1939. PubMed ID: 28499040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field Pea (
    Lee RC; Grime CR; O'Driscoll K; Khentry Y; Farfan-Caceres LM; Tahghighi H; Kamphuis LG
    Phytopathology; 2023 Feb; 113(2):265-276. PubMed ID: 35984372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of
    Thavamanikumar S; Arnold RJ; Luo J; Thumma BR
    G3 (Bethesda); 2020 Oct; 10(10):3751-3763. PubMed ID: 32788286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle.
    Ertl J; Legarra A; Vitezica ZG; Varona L; Edel C; Emmerling R; Götz KU
    Genet Sel Evol; 2014 Jun; 46(1):40. PubMed ID: 24962065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).
    Auinger HJ; Schönleben M; Lehermeier C; Schmidt M; Korzun V; Geiger HH; Piepho HP; Gordillo A; Wilde P; Bauer E; Schön CC
    Theor Appl Genet; 2016 Nov; 129(11):2043-2053. PubMed ID: 27480157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling additive from nonadditive effects using genomic relationship matrices.
    Muñoz PR; Resende MF; Gezan SA; Resende MD; de Los Campos G; Kirst M; Huber D; Peter GF
    Genetics; 2014 Dec; 198(4):1759-68. PubMed ID: 25324160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of genomic predictions for Angus cattle in Brazil incorporating genotypes from related American sires.
    Campos GS; Cardoso FF; Gomes CCG; Domingues R; de Almeida Regitano LC; de Sena Oliveira MC; de Oliveira HN; Carvalheiro R; Albuquerque LG; Miller S; Misztal I; Lourenco D
    J Anim Sci; 2022 Feb; 100(2):. PubMed ID: 35031806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (
    Enciso-Rodriguez F; Douches D; Lopez-Cruz M; Coombs J; de Los Campos G
    G3 (Bethesda); 2018 Jul; 8(7):2471-2481. PubMed ID: 29794167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Analysis of Target Peptides Related to Resistance Against
    Castillejo MÁ; Fondevilla-Aparicio S; Fuentes-Almagro C; Rubiales D
    J Proteome Res; 2020 Mar; 19(3):1000-1012. PubMed ID: 32040328
    [No Abstract]   [Full Text] [Related]  

  • 17. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat.
    Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R
    G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting effective starting point of genomic selection by divergent trends from best linear unbiased prediction and single-step genomic best linear unbiased prediction in pigs, beef cattle, and broilers.
    Abdollahi-Arpanahi R; Lourenco D; Misztal I
    J Anim Sci; 2021 Sep; 99(9):. PubMed ID: 34390341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea.
    Carrillo E; Satovic Z; Aubert G; Boucherot K; Rubiales D; Fondevilla S
    Plant Cell Rep; 2014 Jul; 33(7):1133-45. PubMed ID: 24706065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of quantitative trait loci for Ascochyta blight resistance in pea ( Pisum sativum L.), using populations from two crosses.
    Timmerman-Vaughan GM; Frew TJ; Butler R; Murray S; Gilpin M; Falloon K; Johnston P; Lakeman MB; Russell A; Khan T
    Theor Appl Genet; 2004 Nov; 109(8):1620-31. PubMed ID: 15372153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.