These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25944055)

  • 1. The Formation of CO by Thermal Decomposition of Formic Acid under Electrochemical Conditions of CO2 Reduction.
    Fenwick AQ; Luca OR
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):43-6. PubMed ID: 25944055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.
    Luca OR; Fenwick AQ
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):26-42. PubMed ID: 26022364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Bedard J; Hong DY; Bhan A
    Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Combined Carbon Capture and Recycling: Addition of an Amine Alters Product Selectivity from CO to Formic Acid in Manganese Catalyzed Reduction of CO
    Bhattacharya M; Sebghati S; VanderLinden RT; Saouma CT
    J Am Chem Soc; 2020 Oct; 142(41):17589-17597. PubMed ID: 32955864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions.
    Roldan A; Hollingsworth N; Roffey A; Islam HU; Goodall JB; Catlow CR; Darr JA; Bras W; Sankar G; Holt KB; Hogarth G; de Leeuw NH
    Chem Commun (Camb); 2015 May; 51(35):7501-4. PubMed ID: 25835242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy.
    Miyake H; Okada T; Samjeské G; Osawa M
    Phys Chem Chem Phys; 2008 Jul; 10(25):3662-9. PubMed ID: 18563227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition.
    Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D
    Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO
    Choi YW; Scholten F; Sinev I; Roldan Cuenya B
    J Am Chem Soc; 2019 Apr; 141(13):5261-5266. PubMed ID: 30827111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate.
    Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS
    ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2.
    Verma S; Kim B; Jhong HR; Ma S; Kenis PJ
    ChemSusChem; 2016 Aug; 9(15):1972-9. PubMed ID: 27345560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid.
    Nguyen NT; Mori Y; Matsumoto T; Yatabe T; Kabe R; Nakai H; Yoon KS; Ogo S
    Chem Commun (Camb); 2014 Nov; 50(87):13385-7. PubMed ID: 25234420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst.
    Costentin C; Drouet S; Robert M; Savéant JM
    Science; 2012 Oct; 338(6103):90-4. PubMed ID: 23042890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts.
    Schneider J; Jia H; Muckerman JT; Fujita E
    Chem Soc Rev; 2012 Mar; 41(6):2036-51. PubMed ID: 22167246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces.
    Grozovski V; Climent V; Herrero E; Feliu JM
    Phys Chem Chem Phys; 2010 Aug; 12(31):8822-31. PubMed ID: 20539876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility.
    Agarwal AS; Zhai Y; Hill D; Sridhar N
    ChemSusChem; 2011 Sep; 4(9):1301-10. PubMed ID: 21922681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Reduction of CO
    Ávila-Bolívar B; García-Cruz L; Montiel V; Solla-Gullón J
    Molecules; 2019 May; 24(11):. PubMed ID: 31141906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.