These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2594424)

  • 21. [Sodium and potassium content of erythrocytes at the terminal stage of chronic renal insufficiency and during treatment by chronic hemodialysis].
    Terekhov NT; Goligorskiĭ MS; Kremen' MG; Vasilenko VK
    Urol Nefrol (Mosk); 1974; (6):10-4. PubMed ID: 4141153
    [No Abstract]   [Full Text] [Related]  

  • 22. Investigation on the early events of apoptosis in senescent erythrocytes with special emphasis on intracellular free calcium and loss of phospholipid asymmetry in chronic renal failure.
    Sakthivel R; Farooq SM; Kalaiselvi P; Varalakshmi P
    Clin Chim Acta; 2007 Jul; 382(1-2):1-7. PubMed ID: 17449019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of inhibitors on the transport of dinitrophenyl-S-glutathione in human erythrocytes.
    Pułaski L; Bartosz G
    Biochem Mol Biol Int; 1995 Aug; 36(5):935-42. PubMed ID: 7581009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Sodium and potassium concentration in the erythrocytes of patients undergoing chronic hemodialysis. (II).--Effects of extracellular fluid sodium concentration on the erythrocytes sodium and potassium concentration (author's transl)].
    Imada A; Horiuchi A; Kawauchi Y; Kogi Y
    Rinsho Byori; 1982 Feb; 30(2):199-203. PubMed ID: 7087241
    [No Abstract]   [Full Text] [Related]  

  • 25. [Physico-chemical properties of the blood of patients with chronic kidney failure].
    Gromov AE; Kulikova AI; Shostka GD; Tugusheva FA; Lukichev BG
    Vopr Med Khim; 1982; 28(6):20-4. PubMed ID: 7157718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R; Gengnagel C; Donath J
    Biomed Biochim Acta; 1991; 50(7):869-77. PubMed ID: 1759965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Changes in the structuro-functional properties of erythrocytes in vascular diseases of the brain].
    Mkheian EE; Tunian IuS; Akopov SE; Badzhinian SA; Bakunts GO
    Vopr Med Khim; 1981; 27(4):486-8. PubMed ID: 6270906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid abnormalities in chronic renal failure patients undergoing hemodialysis.
    de Gómez Dumm NT; Giammona AM; Touceda LA; Raimondi C
    Medicina (B Aires); 2001; 61(2):142-6. PubMed ID: 11374135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-induced potassium pathway in sided erythrocyte membrane vesicles.
    Sze H; Solomon AK
    Biochim Biophys Acta; 1979 Jun; 554(1):180-94. PubMed ID: 454599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of voltage-dependent calcium influx in human erythrocytes by fura-2.
    Soldati L; Spaventa R; Vezzoli G; Zerbi S; Adamo D; Caumo A; Rivera R; Bianchi G
    Biochem Biophys Res Commun; 1997 Jul; 236(3):549-54. PubMed ID: 9245686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythrocyte peroxide metabolism, plasma lipid pattern and hemorheological profile in chronic renal failure.
    Caimi G
    J Nephrol; 2002; 15(2):104-8. PubMed ID: 12018624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coexisting independent sodium-sensitive and sodium-insensitive mechanisms of genetic hypertension in spontaneously hypertensive rats (SHR).
    Wells IC; Blotcky AJ
    Can J Physiol Pharmacol; 2001 Sep; 79(9):779-84. PubMed ID: 11599778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erythrocyte sodium transport in patients on chronic hemodialysis.
    Cole CH
    Proc Clin Dial Transplant Forum; 1977; 7():152-6. PubMed ID: 150595
    [No Abstract]   [Full Text] [Related]  

  • 34. Changing effects on erythrocyte sodium and potassium during the development of chronic renal failure with anaemia in rats.
    Thomas TH; Mason C; Illingworth KM
    Clin Sci (Lond); 1986 Dec; 71(6):639-46. PubMed ID: 3791865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+-activated K+ channels in erythrocytes and excitable cells.
    Schwarz W; Passow H
    Annu Rev Physiol; 1983; 45():359-74. PubMed ID: 6303206
    [No Abstract]   [Full Text] [Related]  

  • 36. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells.
    Varecka L; Peterajová E; Písová E
    FEBS Lett; 1998 Aug; 433(1-2):157-60. PubMed ID: 9738952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erythrocyte electrolyte content and sodium efflux in chronic renal failure.
    Jessop S; Eales L
    Nephron; 1977; 18(2):82-7. PubMed ID: 857176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration in red blood cell sodium and potassium concentrations and increased lipid peroxidation in patients with chronic renal failure on maintenance hemodialysis: a hypothesis.
    Paskalev D; Tchankova P; Jankova T; Steiner M; Nenov D
    Am J Nephrol; 1994; 14(3):246-8. PubMed ID: 7832914
    [No Abstract]   [Full Text] [Related]  

  • 39. Mechanisms for passive calcium transport in human red cells.
    Szász I; Sarkadi B; Gárdos G
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(4):239-42. PubMed ID: 755323
    [No Abstract]   [Full Text] [Related]  

  • 40. [Surface architectonics and erythrocyte deformability in patients with terminal stage of chronic kidney failure].
    Gudim TV; Landar' VA; Riapolova IV; Kozinets GI
    Lab Delo; 1989; (9):35-8. PubMed ID: 2481127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.