These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25944258)
1. Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand. Tarvainen L; Räntfors M; Wallin G Plant Cell Environ; 2015 Nov; 38(11):2487-96. PubMed ID: 25944258 [TBL] [Abstract][Full Text] [Related]
2. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Köstner B; Falge E; Tenhunen JD Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028 [TBL] [Abstract][Full Text] [Related]
3. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand. Tarvainen L; Wallin G; Uddling J Oecologia; 2013 Dec; 173(4):1179-89. PubMed ID: 23797410 [TBL] [Abstract][Full Text] [Related]
4. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
5. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce. Marshall JD; Linder S Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689 [TBL] [Abstract][Full Text] [Related]
6. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
7. Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area. Dewar RC; Tarvainen L; Parker K; Wallin G; McMurtrie RE Tree Physiol; 2012 May; 32(5):520-34. PubMed ID: 22619074 [TBL] [Abstract][Full Text] [Related]
8. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature. Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104 [TBL] [Abstract][Full Text] [Related]
9. Physiology and growth of advance Picea rubens and Abies balsamea regeneration following different canopy openings. Dumais D; Prévost M Tree Physiol; 2014 Feb; 34(2):194-204. PubMed ID: 24443326 [TBL] [Abstract][Full Text] [Related]
10. Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions. Uddling J; Wallin G Tree Physiol; 2012 Dec; 32(12):1509-21. PubMed ID: 23042768 [TBL] [Abstract][Full Text] [Related]
11. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Krause K; Cherubini P; Bugmann H; Schleppi P Tree Physiol; 2012 Dec; 32(12):1471-81. PubMed ID: 23135740 [TBL] [Abstract][Full Text] [Related]
12. Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration. Riikonen J; Kontunen-Soppela S; Ossipov V; Tervahauta A; Tuomainen M; Oksanen E; Vapaavuori E; Heinonen J; Kivimäenpää M Tree Physiol; 2012 Sep; 32(9):1102-12. PubMed ID: 22935538 [TBL] [Abstract][Full Text] [Related]
13. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Stinziano JR; Hüner NP; Way DA Tree Physiol; 2015 Dec; 35(12):1303-13. PubMed ID: 26543154 [TBL] [Abstract][Full Text] [Related]
14. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Benomar L; Lamhamedi MS; Villeneuve I; Rainville A; Beaulieu J; Bousquet J; Margolis HA Tree Physiol; 2015 Aug; 35(8):864-78. PubMed ID: 26116923 [TBL] [Abstract][Full Text] [Related]
15. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved. Sigurdsson BD; Medhurst JL; Wallin G; Eggertsson O; Linder S Tree Physiol; 2013 Nov; 33(11):1192-205. PubMed ID: 23878169 [TBL] [Abstract][Full Text] [Related]
16. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration. Rodríguez-Calcerrada J; Limousin JM; Martin-StPaul NK; Jaeger C; Rambal S Tree Physiol; 2012 Apr; 32(4):464-77. PubMed ID: 22491489 [TBL] [Abstract][Full Text] [Related]
17. Why does needle photosynthesis decline with tree height in Norway spruce? Räim O; Kaurilind E; Hallik L; Merilo E Plant Biol (Stuttg); 2012 Mar; 14(2):306-14. PubMed ID: 21974690 [TBL] [Abstract][Full Text] [Related]
18. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. Duan B; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2009 Dec; 29(12):1551-61. PubMed ID: 19825867 [TBL] [Abstract][Full Text] [Related]
19. Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice. Ono K; Maruyama A; Kuwagata T; Mano M; Takimoto T; Hayashi K; Hasegawa T; Miyata A Glob Chang Biol; 2013 Jul; 19(7):2209-20. PubMed ID: 23504912 [TBL] [Abstract][Full Text] [Related]
20. Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Patterson TB; Guy RD; Dang QL Oecologia; 1997 Apr; 110(2):160-168. PubMed ID: 28307420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]