BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 25944389)

  • 1. Deleterious versus protective autoimmunity in multiple sclerosis.
    Kostic M; Stojanovic I; Marjanovic G; Zivkovic N; Cvetanovic A
    Cell Immunol; 2015 Aug; 296(2):122-32. PubMed ID: 25944389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination.
    Rostami A; Ciric B
    J Neurol Sci; 2013 Oct; 333(1-2):76-87. PubMed ID: 23578791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: Current and future developments.
    Luchtman DW; Ellwardt E; Larochelle C; Zipp F
    Cytokine Growth Factor Rev; 2014 Aug; 25(4):403-13. PubMed ID: 25153998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis.
    Jadidi-Niaragh F; Mirshafiey A
    Scand J Immunol; 2011 Jul; 74(1):1-13. PubMed ID: 21338381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis.
    Kebir H; Ifergan I; Alvarez JI; Bernard M; Poirier J; Arbour N; Duquette P; Prat A
    Ann Neurol; 2009 Sep; 66(3):390-402. PubMed ID: 19810097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B7-H1 Selectively Controls TH17 Differentiation and Central Nervous System Autoimmunity via a Novel Non-PD-1-Mediated Pathway.
    Herold M; Posevitz V; Chudyka D; Hucke S; Groß C; Kurth F; Leder C; Loser K; Kurts C; Knolle P; Klotz L; Wiendl H
    J Immunol; 2015 Oct; 195(8):3584-95. PubMed ID: 26378076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo models of multiple sclerosis.
    van der Star BJ; Vogel DY; Kipp M; Puentes F; Baker D; Amor S
    CNS Neurol Disord Drug Targets; 2012 Aug; 11(5):570-88. PubMed ID: 22583443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis.
    Korn T; Mitsdoerffer M; Kuchroo VK
    Results Probl Cell Differ; 2010; 51():43-74. PubMed ID: 19513635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Th1/Th2/Th17/Treg cytokines in Guillain-Barré syndrome and experimental autoimmune neuritis.
    Zhang HL; Zheng XY; Zhu J
    Cytokine Growth Factor Rev; 2013 Oct; 24(5):443-53. PubMed ID: 23791985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ERβ in CD4+ T Cells Is Crucial for Ligand-Mediated Suppression of Central Nervous System Autoimmunity.
    Aggelakopoulou M; Kourepini E; Paschalidis N; Panoutsakopoulou V
    J Immunol; 2016 Jun; 196(12):4947-56. PubMed ID: 27183630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
    Murphy AC; Lalor SJ; Lynch MA; Mills KH
    Brain Behav Immun; 2010 May; 24(4):641-51. PubMed ID: 20138983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-cells in multiple sclerosis.
    Severson C; Hafler DA
    Results Probl Cell Differ; 2010; 51():75-98. PubMed ID: 19582415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms regulating regional localization of inflammation during CNS autoimmunity.
    Pierson E; Simmons SB; Castelli L; Goverman JM
    Immunol Rev; 2012 Jul; 248(1):205-15. PubMed ID: 22725963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoreactive T lymphocytes in multiple sclerosis: pathogenic role and therapeutic targeting.
    Stinissen P; Raus J
    Acta Neurol Belg; 1999 Mar; 99(1):65-9. PubMed ID: 10218096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a second mimicry epitope from Acanthamoeba castellanii that induces CNS autoimmunity by generating cross-reactive T cells for MBP 89-101 in SJL mice.
    Massilamany C; Asojo OA; Gangaplara A; Steffen D; Reddy J
    Int Immunol; 2011 Dec; 23(12):729-39. PubMed ID: 22058327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon-γ orchestrates the number and function of Th17 cells in experimental autoimmune encephalomyelitis.
    Berghmans N; Nuyts A; Uyttenhove C; Van Snick J; Opdenakker G; Heremans H
    J Interferon Cytokine Res; 2011 Jul; 31(7):575-87. PubMed ID: 21348780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Balasa R; Barcutean L; Balasa A; Motataianu A; Roman-Filip C; Manu D
    Hum Immunol; 2020 May; 81(5):237-243. PubMed ID: 32122685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4.
    Glatigny S; Duhen R; Arbelaez C; Kumari S; Bettelli E
    Sci Rep; 2015 Jan; 5():7834. PubMed ID: 25592296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the immunopathogenesis of multiple sclerosis.
    Hellings N; Raus J; Stinissen P
    Immunol Res; 2002; 25(1):27-51. PubMed ID: 11868933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORγt and STAT3.
    Zhu E; Wang X; Zheng B; Wang Q; Hao J; Chen S; Zhao Q; Zhao L; Wu Z; Yin Z
    J Immunol; 2014 Jun; 192(12):5599-609. PubMed ID: 24842756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.