BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 25944389)

  • 21. [Immunology for understanding the pathogenesis of multiple sclerosis].
    Matsui M
    Rinsho Shinkeigaku; 2013; 53(11):898-901. PubMed ID: 24291827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Th17 Cells in MS and Experimental Autoimmune Encephalomyelitis.
    Hofstetter H; Gold R; Hartung HP
    Int MS J; 2009 Apr; 16(1):12-8. PubMed ID: 19413921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis.
    Dolati S; Marofi F; Babaloo Z; Aghebati-Maleki L; Roshangar L; Ahmadi M; Rikhtegar R; Yousefi M
    Biomed Pharmacother; 2018 Aug; 104():280-290. PubMed ID: 29775896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple sclerosis: immunopathologic mechanisms in the progression and resolution of inflammatory demyelination.
    Raine CS
    Res Publ Assoc Res Nerv Ment Dis; 1990; 68():37-54. PubMed ID: 1691521
    [No Abstract]   [Full Text] [Related]  

  • 25. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.
    Nouri M; Bredberg A; Weström B; Lavasani S
    PLoS One; 2014; 9(9):e106335. PubMed ID: 25184418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNAs targeting TGF-β signaling exacerbate central nervous system autoimmunity by disrupting regulatory T cell development and function.
    Rau CN; Severin ME; Lee PW; Deffenbaugh JL; Liu Y; Murphy SP; Petersen-Cherubini CL; Lovett-Racke AE
    Eur J Immunol; 2024 Jun; 54(6):e2350548. PubMed ID: 38634287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regression and spreading of self-recognition during the development of autoimmune demyelinating disease.
    Tuohy VK; Yu M; Yin L; Kawczak JA; Kinkel PR
    J Autoimmun; 1999 Aug; 13(1):11-20. PubMed ID: 10441163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Th17 cells in central nervous system autoimmunity.
    Sie C; Korn T; Mitsdoerffer M
    Exp Neurol; 2014 Dec; 262 Pt A():18-27. PubMed ID: 24681001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice - a step towards understanding the complexity of multiple sclerosis.
    Kuerten S; Angelov DN
    Ann Anat; 2008; 190(1):1-15. PubMed ID: 18342137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adapted focal experimental autoimmune encephalomyelitis to allow MRI exploration of multiple sclerosis features.
    Tourdias T; Hiba B; Raffard G; Biran M; Nishiguchi T; Aussudre J; Franconi JM; Brochet B; Petry KG; Dousset V
    Exp Neurol; 2011 Aug; 230(2):248-57. PubMed ID: 21575634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review.
    Aharoni R
    J Autoimmun; 2014 Nov; 54():81-92. PubMed ID: 24934599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor γ.
    Hucke S; Floßdorf J; Grützke B; Dunay IR; Frenzel K; Jungverdorben J; Linnartz B; Mack M; Peitz M; Brüstle O; Kurts C; Klockgether T; Neumann H; Prinz M; Wiendl H; Knolle P; Klotz L
    Brain; 2012 May; 135(Pt 5):1586-605. PubMed ID: 22447120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RORγt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells.
    Park TY; Park SD; Cho JY; Moon JS; Kim NY; Park K; Seong RH; Lee SW; Morio T; Bothwell AL; Lee SK
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18673-8. PubMed ID: 25527718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Longitudinal T cell-derived IFN-γ/IL-17 balances do not correlate with the disease course in two mouse models of experimental autoimmune encephalomyelitis.
    Kuerten S; Wunsch M; Lehmann PV
    J Immunol Methods; 2013 Dec; 398-399():68-75. PubMed ID: 24076090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IFN-β inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis.
    Cheng W; Zhao Q; Xi Y; Li C; Xu Y; Wang L; Niu X; Wang Z; Chen G
    Mol Immunol; 2015 Mar; 64(1):152-62. PubMed ID: 25433436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine.
    Haghikia A; Jörg S; Duscha A; Berg J; Manzel A; Waschbisch A; Hammer A; Lee DH; May C; Wilck N; Balogh A; Ostermann AI; Schebb NH; Akkad DA; Grohme DA; Kleinewietfeld M; Kempa S; Thöne J; Demir S; Müller DN; Gold R; Linker RA
    Immunity; 2015 Oct; 43(4):817-29. PubMed ID: 26488817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogenesis of multiple sclerosis: an update on immunology.
    Hemmer B; Cepok S; Nessler S; Sommer N
    Curr Opin Neurol; 2002 Jun; 15(3):227-31. PubMed ID: 12045717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [MiRNAs: new actors in the physiopathology of multiple sclerosis].
    Jagot F; Davoust N
    Med Sci (Paris); 2017; 33(6-7):620-628. PubMed ID: 28990564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Sosa RA; Forsthuber TG
    J Interferon Cytokine Res; 2011 Oct; 31(10):753-68. PubMed ID: 21919736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response.
    Lowther DE; Chong DL; Ascough S; Ettorre A; Ingram RJ; Boyton RJ; Altmann DM
    Acta Neuropathol; 2013 Oct; 126(4):501-15. PubMed ID: 23934116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.