BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25944542)

  • 21. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China.
    Wang L; Li L; Cheng K; Ji C; Yue Q; Bian R; Pan G
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9683-9696. PubMed ID: 29368196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants.
    Anyanwu IN; Alo MN; Onyekwere AM; Crosse JD; Nworie O; Chamba EB
    Ecotoxicol Environ Saf; 2018 May; 153():116-126. PubMed ID: 29425842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.
    Wu M; Yang M; Han X; Zhong T; Zheng Y; Ding P; Wu W
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1007-14. PubMed ID: 25850742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area.
    Lu H; Liu J; Kerr PG; Shao H; Wu Y
    Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China.
    Zheng J; Chen J; Pan G; Liu X; Zhang X; Li L; Bian R; Cheng K; Jinwei Z
    Sci Total Environ; 2016 Nov; 571():206-17. PubMed ID: 27471985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochar has no effect on soil respiration across Chinese agricultural soils.
    Liu X; Zheng J; Zhang D; Cheng K; Zhou H; Zhang A; Li L; Joseph S; Smith P; Crowley D; Kuzyakov Y; Pan G
    Sci Total Environ; 2016 Jun; 554-555():259-65. PubMed ID: 26950640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability.
    Li H; Liu Y; Chen Y; Wang S; Wang M; Xie T; Wang G
    Sci Rep; 2016 Aug; 6():31616. PubMed ID: 27530495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil.
    Irshad MK; Noman A; Alhaithloul HAS; Adeel M; Rui Y; Shah T; Zhu S; Shang J
    Sci Total Environ; 2020 May; 717():137086. PubMed ID: 32062258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Biochar Amendment on CO₂ Emissions from Paddy Fields under Water-Saving Irrigation.
    Yang S; Jiang Z; Sun X; Ding J; Xu J
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30453685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.
    Zhu H; Zhong H; Wu J
    Chemosphere; 2016 Jun; 152():259-64. PubMed ID: 26974480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Influence of Biochar Amendment on Soil Denitrifying Microorganisms in Double Rice Cropping System].
    Liu JY; Qiu HS; Wang C; Shen JL; Wu JS
    Huan Jing Ke Xue; 2019 May; 40(5):2394-2403. PubMed ID: 31087881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar applied at an appropriate rate can avoid increasing NH
    Feng Y; Sun H; Xue L; Liu Y; Gao Q; Lu K; Yang L
    Chemosphere; 2017 Feb; 168():1277-1284. PubMed ID: 27919533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment.
    Yi Q; Liang B; Nan Q; Wang H; Zhang W; Wu W
    Sci Total Environ; 2020 Jun; 721():137670. PubMed ID: 32171138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.
    Lin L; Gao M; Qiu W; Wang D; Huang Q; Song Z
    Environ Pollut; 2017 Dec; 231(Pt 1):479-486. PubMed ID: 28841500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of CH
    Chen D; Wang C; Shen J; Li Y; Wu J
    Environ Pollut; 2018 Apr; 235():95-103. PubMed ID: 29275273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rice straw biochar mitigated more N
    Xu X; He C; Yuan X; Zhang Q; Wang S; Wang B; Guo X; Zhang L
    Environ Pollut; 2020 Aug; 263(Pt B):114477. PubMed ID: 32283396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.