These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 25944712)
21. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics. Gioia M; Foster LJ; Overall CM Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966 [TBL] [Abstract][Full Text] [Related]
22. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Vizovišek M; Vidmar R; Van Quickelberghe E; Impens F; Andjelković U; Sobotič B; Stoka V; Gevaert K; Turk B; Fonović M Proteomics; 2015 Jul; 15(14):2479-90. PubMed ID: 25626674 [TBL] [Abstract][Full Text] [Related]
23. Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Bienvenut WV; Giglione C; Meinnel T Proteomics; 2015 Jul; 15(14):2503-18. PubMed ID: 26017780 [TBL] [Abstract][Full Text] [Related]
24. Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides. Bland C; Bellanger L; Armengaud J J Proteome Res; 2014 Feb; 13(2):668-80. PubMed ID: 24313271 [TBL] [Abstract][Full Text] [Related]
25. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Venne AS; Solari FA; Faden F; Paretti T; Dissmeyer N; Zahedi RP Proteomics; 2015 Jul; 15(14):2458-69. PubMed ID: 26010716 [TBL] [Abstract][Full Text] [Related]
26. PCHM: A bioinformatic resource for high-throughput human mitochondrial proteome searching and comparison. Kim T; Kim E; Park SJ; Joo H Comput Biol Med; 2009 Aug; 39(8):689-96. PubMed ID: 19541297 [TBL] [Abstract][Full Text] [Related]
27. Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry. Doucet A; Overall CM Methods Enzymol; 2011; 501():275-93. PubMed ID: 22078539 [TBL] [Abstract][Full Text] [Related]
28. LysargiNase and Chemical Derivatization Based Strategy for Facilitating In-Depth Profiling of C-Terminome. Hu H; Zhao W; Zhu M; Zhao L; Zhai L; Xu JY; Liu P; Tan M Anal Chem; 2019 Nov; 91(22):14522-14529. PubMed ID: 31634432 [TBL] [Abstract][Full Text] [Related]
29. A protocol for analyzing the protein terminome of human cancer cell line culture supernatants. Tsumagari K; Chang CH; Ishihama Y STAR Protoc; 2021 Sep; 2(3):100682. PubMed ID: 34377995 [TBL] [Abstract][Full Text] [Related]
30. [Optimization and evaluation of protein C-terminal peptide enrichment strategy based on arginine cleavage]. Zhao X; Hu H; Zhao W; Liu P; Tan M Se Pu; 2022 Jan; 40(1):17-27. PubMed ID: 34985212 [TBL] [Abstract][Full Text] [Related]
31. Qualitative and quantitative analysis of the adult Drosophila melanogaster proteome. Xing X; Zhang C; Li N; Zhai L; Zhu Y; Yang X; Xu P Proteomics; 2014 Feb; 14(2-3):286-90. PubMed ID: 24259522 [TBL] [Abstract][Full Text] [Related]
32. EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples. Bienvenut WV; Scarpelli JP; Dumestier J; Meinnel T; Giglione C BMC Bioinformatics; 2017 Mar; 18(1):182. PubMed ID: 28320318 [TBL] [Abstract][Full Text] [Related]
33. Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome. Lobas AA; Karpov DS; Kopylov AT; Solovyeva EM; Ivanov MV; Ilina IY; Lazarev VN; Kuznetsova KG; Ilgisonis EV; Zgoda VG; Gorshkov MV; Moshkovskii SA Proteomics; 2016 Jul; 16(14):1980-91. PubMed ID: 27233776 [TBL] [Abstract][Full Text] [Related]
34. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism. Stauch KL; Purnell PR; Villeneuve LM; Fox HS Proteomics; 2015 May; 15(9):1574-86. PubMed ID: 25546256 [TBL] [Abstract][Full Text] [Related]
35. Protein processing characterized by a gel-free proteomics approach. Van Damme P; Impens F; Vandekerckhove J; Gevaert K Methods Mol Biol; 2008; 484():245-62. PubMed ID: 18592184 [TBL] [Abstract][Full Text] [Related]
36. SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells. Zhang H; Wu P; Chen F; Hao Y; Lao Y; Ren L; Sun L; Sun W; Wei H; Chan DW; Jiang Y; He F Proteomics; 2014 Sep; 14(17-18):1977-86. PubMed ID: 24995952 [TBL] [Abstract][Full Text] [Related]
37. Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis. Schilling O; Huesgen PF; Barré O; Overall CM Methods Mol Biol; 2011; 781():59-69. PubMed ID: 21877277 [TBL] [Abstract][Full Text] [Related]
38. Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS. Schlage P; Kockmann T; Kizhakkedathu JN; auf dem Keller U Proteomics; 2015 Jul; 15(14):2491-502. PubMed ID: 25871442 [TBL] [Abstract][Full Text] [Related]
39. Exploring the Mitochondrial Degradome by the TAILS Proteomics Approach in a Cellular Model of Parkinson's Disease. Lualdi M; Ronci M; Zilocchi M; Corno F; Turilli ES; Sponchiado M; Aceto A; Alberio T; Fasano M Front Aging Neurosci; 2019; 11():195. PubMed ID: 31417398 [TBL] [Abstract][Full Text] [Related]
40. Application of mass spectrometry in proteomics. Guerrera IC; Kleiner O Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]