These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2594473)

  • 1. Zinc inhibition of glucose uptake in brush border membrane vesicles from pig small intestine.
    Watkins DW; Chenu C; Ripoche P
    Pflugers Arch; 1989 Nov; 415(2):165-71. PubMed ID: 2594473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Yoshino H; Hashida M; Sezaki H
    Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine.
    Tacnet F; Watkins DW; Ripoche P
    Biochim Biophys Acta; 1990 May; 1024(2):323-30. PubMed ID: 2112950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.
    Tacnet F; Lauthier F; Ripoche P
    J Physiol; 1993 Jun; 465():57-72. PubMed ID: 8229851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-O-n-octyl-beta-D-glucopyranoside as a competitive inhibitor of Na+-dependent D-glucose cotransporter in the small intestine brush-border membrane.
    Vincenzini MT; Iantomasi T; Stio M; Treves C; Favilli F; Vanni P
    Biochim Biophys Acta; 1987 Oct; 903(2):273-6. PubMed ID: 3651462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles.
    Welsch CA; Lachance PA; Wasserman BP
    J Nutr; 1989 Nov; 119(11):1698-704. PubMed ID: 2600675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD; Cheeseman CI
    Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-coupled D-glucose uptake and membrane order of enterocyte brush border membrane vesicles, under the effect of a series of N-phenylcarbamates.
    Fernandez Y; Boigegrain RA; Cambon-Gros C; Deltour P; Mitjavila S
    FEBS Lett; 1986 May; 201(1):119-23. PubMed ID: 3709801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of cadmium with brush border membrane vesicles from the rat small intestine.
    Bevan C; Foulkes EC
    Toxicology; 1989 Mar; 54(3):297-309. PubMed ID: 2495582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in glucose uptake by and phlorizin binding to brush-border membrane vesicles of small intestine from streptozotocin-induced diabetic rats.
    Tsuji Y; Yamada K; Hosoya N; Takai K; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun; 34(3):327-34. PubMed ID: 3183781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced inhibition of taurine transport in brush-border membrane vesicles from rabbit small intestine.
    Miyamoto Y; Kulanthaivel P; Ganapathy V; Whitford GM; Leibach FH
    Biochim Biophys Acta; 1990 Dec; 1030(2):189-94. PubMed ID: 2124507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ethanol in vitro on rat intestinal brush-border membranes.
    Hunter CK; Treanor LL; Gray JP; Halter SA; Hoyumpa A; Wilson FA
    Biochim Biophys Acta; 1983 Jul; 732(1):256-65. PubMed ID: 6871193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes.
    Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF
    Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid transport in brush-border-membrane vesicles isolated from human small intestine.
    Lücke H; Haase W; Murer H
    Biochem J; 1977 Dec; 168(3):529-32. PubMed ID: 606251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of brush border membrane vesicles from bovine small intestine.
    Moe AJ; Pocius PA; Polan CE
    J Nutr; 1985 Sep; 115(9):1173-9. PubMed ID: 4032065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles.
    Krick W; Wolff NA; Burckhardt G
    Pflugers Arch; 2000 Nov; 441(1):125-32. PubMed ID: 11205051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of valinomycin on membrane vesicle aggregation of porcine intestinal brush borders.
    Ohyashiki T; Kodera M; Mohri T
    J Biochem; 1984 Sep; 96(3):665-70. PubMed ID: 6501260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.