BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25944908)

  • 1. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation.
    Feng J; Yang W; Xie Z; Xiang F; Cao Z; Li W; Hu H; Chen Z; Wu Y
    J Biol Chem; 2015 Jun; 290(25):15487-15495. PubMed ID: 25944908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human α-defensins are immune-related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity.
    Xie Z; Feng J; Yang W; Xiang F; Yang F; Zhao Y; Cao Z; Li W; Chen Z; Wu Y
    FASEB J; 2015 Oct; 29(10):4324-33. PubMed ID: 26148969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse β-Defensin 3, A Defensin Inhibitor of Both Its Endogenous and Exogenous Potassium Channels.
    Zhang Y; Zhao Y; Liu H; Yu W; Yang F; Li W; Cao Z; Wu Y
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29925780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human beta-defensin 1, a new animal toxin-like blocker of potassium channel.
    Feng J; Xie Z; Yang W; Zhao Y; Xiang F; Cao Z; Li W; Chen Z; Wu Y
    Toxicon; 2016 Apr; 113():1-6. PubMed ID: 26854370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence.
    Horne AJ; Peters CJ; Claydon TW; Fedida D
    J Gen Physiol; 2010 Jul; 136(1):83-99. PubMed ID: 20584892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous animal toxin-like human β-defensin 2 inhibits own K(+) channels through interaction with channel extracellular pore region.
    Yang W; Feng J; Xiang F; Xie Z; Zhang G; Sabatier JM; Cao Z; Li W; Chen Z; Wu Y
    Cell Mol Life Sci; 2015 Feb; 72(4):845-53. PubMed ID: 25238780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allowed N-glycosylation sites on the Kv1.2 potassium channel S1-S2 linker: implications for linker secondary structure and the glycosylation effect on channel function.
    Zhu J; Watanabe I; Poholek A; Koss M; Gomez B; Yan C; Recio-Pinto E; Thornhill WB
    Biochem J; 2003 Nov; 375(Pt 3):769-75. PubMed ID: 12911333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stretch increases Kv1.5 current through an interaction between the S1-S2 linker and N-terminus of the channel.
    Milton AO; Wang T; Li W; Guo J; Zhang S
    J Biol Chem; 2020 Apr; 295(14):4723-4732. PubMed ID: 32122972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-gated K+ channels contain multiple intersubunit association sites.
    Tu L; Santarelli V; Sheng Z; Skach W; Pain D; Deutsch C
    J Biol Chem; 1996 Aug; 271(31):18904-11. PubMed ID: 8702552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of hERG1 channel gating by Cd2+.
    Abbruzzese J; Sachse FB; Tristani-Firouzi M; Sanguinetti MC
    J Gen Physiol; 2010 Aug; 136(2):203-24. PubMed ID: 20660661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological characterization of human beta-defensins 3 and 4 on potassium channels: Evidence of diversity in beta-defensin-potassium channel interactions.
    Zhao Y; Xie Z; Feng J; Li W; Cao Z; Wu Y
    Peptides; 2018 Oct; 108():14-18. PubMed ID: 30121363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N terminus and transmembrane segment S1 of Kv1.5 can coassemble with the rest of the channel independently of the S1-S2 linkage.
    Lamothe SM; Hogan-Cann AE; Li W; Guo J; Yang T; Tschirhart JN; Zhang S
    J Biol Chem; 2018 Oct; 293(40):15347-15358. PubMed ID: 30121572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.
    Gurevitz M
    Toxicon; 2012 Sep; 60(4):502-11. PubMed ID: 22694883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel.
    Wang G; Covarrubias M
    J Gen Physiol; 2006 Apr; 127(4):391-400. PubMed ID: 16533897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels.
    Li-Smerin Y; Swartz KJ
    J Gen Physiol; 2001 Mar; 117(3):205-18. PubMed ID: 11222625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.
    de la Peña P; Domínguez P; Barros F
    Pflugers Arch; 2018 Jul; 470(7):1069-1085. PubMed ID: 29572566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating.
    Zhang Q; Zhou P; Chen Z; Li M; Jiang H; Gao Z; Yang H
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20093-8. PubMed ID: 24277843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the Shaker K(+) channel gating kinetics by the S3-S4 linker.
    Gonzalez C; Rosenman E; Bezanilla F; Alvarez O; Latorre R
    J Gen Physiol; 2000 Feb; 115(2):193-208. PubMed ID: 10653896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.