BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 25944913)

  • 21. Inhibition of NAMPT decreases cell growth and enhances susceptibility to oxidative stress.
    Xu R; Yuan Z; Yang L; Li L; Li D; Lv C
    Oncol Rep; 2017 Sep; 38(3):1767-1773. PubMed ID: 28714034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.
    Song TY; Yeh SL; Hu ML; Chen MY; Yang NC
    Biogerontology; 2015 Dec; 16(6):789-800. PubMed ID: 26330291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of NAMPT markedly enhances plasma-activated medium-induced cell death in human breast cancer MDA-MB-231 cells.
    Nagaya M; Hara H; Kamiya T; Adachi T
    Arch Biochem Biophys; 2019 Nov; 676():108155. PubMed ID: 31628926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase.
    Olesen UH; Petersen JG; Garten A; Kiess W; Yoshino J; Imai S; Christensen MK; Fristrup P; Thougaard AV; Björkling F; Jensen PB; Nielsen SJ; Sehested M
    BMC Cancer; 2010 Dec; 10():677. PubMed ID: 21144000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.
    Tolstikov V; Nikolayev A; Dong S; Zhao G; Kuo MS
    PLoS One; 2014; 9(12):e114019. PubMed ID: 25486521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The NAD(+) salvage pathway modulates cancer cell viability via p73.
    Sharif T; Ahn DG; Liu RZ; Pringle E; Martell E; Dai C; Nunokawa A; Kwak M; Clements D; Murphy JP; Dean C; Marcato P; McCormick C; Godbout R; Gujar SA; Lee PW
    Cell Death Differ; 2016 Apr; 23(4):669-80. PubMed ID: 26586573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NAMPT pathway is involved in the FOXO3a-mediated regulation of GADD45A expression.
    Thakur BK; Lippka Y; Dittrich T; Chandra P; Skokowa J; Welte K
    Biochem Biophys Res Commun; 2012 Apr; 420(4):714-20. PubMed ID: 22430142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoring NAD
    Katayoshi T; Nakajo T; Tsuji-Naito K
    J Photochem Photobiol B; 2021 Aug; 221():112238. PubMed ID: 34130091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes.
    Oyarzún AP; Westermeier F; Pennanen C; López-Crisosto C; Parra V; Sotomayor-Flores C; Sánchez G; Pedrozo Z; Troncoso R; Lavandero S
    Biochem Pharmacol; 2015 Nov; 98(1):92-101. PubMed ID: 26297909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition.
    Zucal C; D'Agostino VG; Casini A; Mantelli B; Thongon N; Soncini D; Caffa I; Cea M; Ballestrero A; Quattrone A; Indraccolo S; Nencioni A; Provenzani A
    BMC Cancer; 2015 Nov; 15():855. PubMed ID: 26542945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities.
    Chen H; Wang S; Zhang H; Nice EC; Huang C
    Expert Rev Anticancer Ther; 2016 Aug; 16(8):827-38. PubMed ID: 27186719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Up-regulation of nicotinamide phosphoribosyltransferase and increase of NAD+ levels by glucose restriction extend replicative lifespan of human fibroblast Hs68 cells.
    Yang NC; Song TY; Chang YZ; Chen MY; Hu ML
    Biogerontology; 2015 Feb; 16(1):31-42. PubMed ID: 25146190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.
    Sociali G; Grozio A; Caffa I; Schuster S; Becherini P; Damonte P; Sturla L; Fresia C; Passalacqua M; Mazzola F; Raffaelli N; Garten A; Kiess W; Cea M; Nencioni A; Bruzzone S
    FASEB J; 2019 Mar; 33(3):3704-3717. PubMed ID: 30514106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
    Nakahata Y; Sahar S; Astarita G; Kaluzova M; Sassone-Corsi P
    Science; 2009 May; 324(5927):654-7. PubMed ID: 19286518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nampt/PBEF/visfatin and cancer.
    Bi TQ; Che XM
    Cancer Biol Ther; 2010 Jul; 10(2):119-25. PubMed ID: 20647743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.
    Ramsey KM; Yoshino J; Brace CS; Abrassart D; Kobayashi Y; Marcheva B; Hong HK; Chong JL; Buhr ED; Lee C; Takahashi JS; Imai S; Bass J
    Science; 2009 May; 324(5927):651-4. PubMed ID: 19299583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nicotinamide phosphoribosyltransferase production in human spermatozoa is influenced by maturation stage.
    Riammer S; Garten A; Schaab M; Grunewald S; Kiess W; Kratzsch J; Paasch U
    Andrology; 2016 Nov; 4(6):1045-1053. PubMed ID: 27566659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotinamide Phosphoribosyltransferase Inhibitor APO866 Prevents IL-1β-Induced Human Nucleus Pulposus Cell Degeneration via Autophagy.
    Shi C; Wu H; Du D; Im HJ; Zhang Y; Hu B; Chen H; Wang X; Liu Y; Cao P; Tian Y; Shen X; Gao R; van Wijnen AJ; Ye X; Yuan W
    Cell Physiol Biochem; 2018; 49(6):2463-2482. PubMed ID: 30261504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of FK866-Based Degraders for Blocking the Nonenzymatic Functions of Nicotinamide Phosphoribosyltransferase.
    Lu T; Chen F; Yao J; Bu Z; Kyani A; Liang B; Chen S; Zheng Y; Liang H; Neamati N; Liu Y
    J Med Chem; 2024 May; 67(10):8099-8121. PubMed ID: 38722799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress.
    Sharma P; Xu J; Williams K; Easley M; Elder JB; Lonser R; Lang FF; Lapalombella R; Sampath D; Puduvalli VK
    Neuro Oncol; 2022 Feb; 24(2):229-244. PubMed ID: 34260721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.