These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25944916)

  • 21. Gene expression of functionally-related genes coevolves across fungal species: detecting coevolution of gene expression using phylogenetic comparative methods.
    Cope AL; O'Meara BC; Gilchrist MA
    BMC Genomics; 2020 May; 21(1):370. PubMed ID: 32434474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic methodology for detecting protein interactions.
    Waddell PJ; Kishino H; Ota R
    Mol Biol Evol; 2007 Mar; 24(3):650-9. PubMed ID: 17158779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting the coevolution of biosequences--an example of RNA interaction prediction.
    Yeang CH; Darot JF; Noller HF; Haussler D
    Mol Biol Evol; 2007 Sep; 24(9):2119-31. PubMed ID: 17636042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring a phylogenetic approach for the detection of correlated substitutions in proteins.
    Tuff P; Darlu P
    Mol Biol Evol; 2000 Nov; 17(11):1753-9. PubMed ID: 11070062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary rate covariation reveals shared functionality and coexpression of genes.
    Clark NL; Alani E; Aquadro CF
    Genome Res; 2012 Apr; 22(4):714-20. PubMed ID: 22287101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation.
    Govindarajan S; Ness JE; Kim S; Mundorff EC; Minshull J; Gustafsson C
    J Mol Biol; 2003 May; 328(5):1061-9. PubMed ID: 12729741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model-based approach for detecting coevolving positions in a molecule.
    Dutheil J; Pupko T; Jean-Marie A; Galtier N
    Mol Biol Evol; 2005 Sep; 22(9):1919-28. PubMed ID: 15944445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of contact residue pairs based on co-substitution between sites in protein structures.
    Miyazawa S
    PLoS One; 2013; 8(1):e54252. PubMed ID: 23342110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis.
    Choi SS; Li W; Lahn BT
    Nat Genet; 2005 Dec; 37(12):1367-71. PubMed ID: 16282975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses.
    Aledo JC
    BMC Evol Biol; 2017 Jul; 17(1):171. PubMed ID: 28750604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary conservation of RNA sequence and structure.
    Rivas E
    Wiley Interdiscip Rev RNA; 2021 Sep; 12(5):e1649. PubMed ID: 33754485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Networks of coevolving sites in structural and functional domains of serpin proteins.
    Buck MJ; Atchley WR
    Mol Biol Evol; 2005 Jul; 22(7):1627-34. PubMed ID: 15858204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous and tractable models for the variation of evolutionary rates.
    Lepage T; Lawi S; Tupper P; Bryant D
    Math Biosci; 2006 Feb; 199(2):216-33. PubMed ID: 16406009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades.
    Gloor GB; Tyagi G; Abrassart DM; Kingston AJ; Fernandes AD; Dunn SD; Brandl CJ
    Mol Biol Evol; 2010 May; 27(5):1181-91. PubMed ID: 20065119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomistic simulation of protein evolution reveals sequence covariation and time-dependent fluctuations of site-specific substitution rates.
    Norn C; André I
    PLoS Comput Biol; 2023 Mar; 19(3):e1010262. PubMed ID: 36961827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constraints from protein structure and intra-molecular coevolution influence the fitness of HIV-1 recombinants.
    Woo J; Robertson DL; Lovell SC
    Virology; 2014 Apr; 454-455():34-9. PubMed ID: 24725929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting protein domain interactions from coevolution of conserved regions.
    Kann MG; Jothi R; Cherukuri PF; Przytycka TM
    Proteins; 2007 Jun; 67(4):811-20. PubMed ID: 17357158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure.
    Park K; Kim D
    Biochim Biophys Acta; 2012 Dec; 1824(12):1484-9. PubMed ID: 22684088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein biophysics explains why highly abundant proteins evolve slowly.
    Serohijos AW; Rimas Z; Shakhnovich EI
    Cell Rep; 2012 Aug; 2(2):249-56. PubMed ID: 22938865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting coevolving positions in a molecule: why and how to account for phylogeny.
    Dutheil JY
    Brief Bioinform; 2012 Mar; 13(2):228-43. PubMed ID: 21949241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.