These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25944963)

  • 41. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples.
    El Arabi AM; Ahmed NK; Salahel Din K
    Radiat Prot Dosimetry; 2008; 128(3):382-5. PubMed ID: 17627952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey.
    Aykamis AS; Turhan S; Aysun Ugur F; Baykan UN; Kiliç AM
    Radiat Prot Dosimetry; 2013 Nov; 157(1):105-11. PubMed ID: 23633647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling gamma radiation dose in dwellings due to building materials.
    de Jong P; van Dijk W
    Health Phys; 2008 Jan; 94(1):33-42. PubMed ID: 18091149
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A method based on Monte Carlo simulation for the determination of the G(E) function.
    Chen W; Feng T; Liu J; Su C; Tian Y
    Radiat Prot Dosimetry; 2015 Feb; 163(2):217-21. PubMed ID: 24795395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of Monte Carlo simulation to the prediction of extrapolation curves in the coincidence technique.
    Dias MS; Takeda MN; Koskinas MF
    Appl Radiat Isot; 2006; 64(10-11):1186-92. PubMed ID: 16556501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The refined shielding design for the cyclotron room of the Buddhist Tzu Chi General Hospital.
    Sheu RD; Chen CC; Sheu RJ; Kao CH; Jiang SH
    Radiat Prot Dosimetry; 2005; 115(1-4):216-21. PubMed ID: 16381715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High natural radiation exposure in radon spa areas: a detailed field investigation in Niska Banja (Balkan region).
    Zunić ZS; Kobal I; Vaupotic J; Kozak K; Mazur J; Birovljev A; Janik M; Celiković I; Ujić P; Demajo A; Krstić G; Jakupi B; Quarto M; Bochicchio F
    J Environ Radioact; 2006; 89(3):249-60. PubMed ID: 16828942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indoor radon in a Spanish region with different gamma exposure levels.
    Quindós LS; Fernández PL; Sainz C; Fuente I; Nicolás J; Quindós L; Arteche J
    J Environ Radioact; 2008 Oct; 99(10):1544-7. PubMed ID: 18255206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EFFECT OF BUILDUP FACTORS ON INDOOR GAMMA DOSE RATE.
    Manić V; Manić G; Nikezić D; Krstić D
    Radiat Prot Dosimetry; 2020 Aug; 190(2):132-138. PubMed ID: 32626894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings.
    Clouvas A; Xanthos S; Antonopoulos-Domis M
    Radiat Prot Dosimetry; 2006; 118(4):482-90. PubMed ID: 16410290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Indoor radon concentration forecasting in South Tyrol.
    Verdi L; Weber A; Stoppa G
    Radiat Prot Dosimetry; 2004; 111(4):435-8. PubMed ID: 15550717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soil gas radon, indoor radon and gamma dose rate in CZ: contribution to geostatistical methods for European atlas of natural radiations.
    Barnet I; Fojtíková I
    Radiat Prot Dosimetry; 2008; 130(1):81-4. PubMed ID: 18397927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thoron in indoor air: modeling for a better exposure estimate.
    Meisenberg O; Tschiersch J
    Indoor Air; 2011 Jun; 21(3):240-52. PubMed ID: 21198887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of test duration effect in indoor radon measurement by Monte Carlo simulations.
    Chen J; Moir D
    Radiat Prot Dosimetry; 2012 Jun; 150(2):248-58. PubMed ID: 22003181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calculation of conversion coefficients for air kerma to ambient dose equivalent using transmitted spectra of megavoltage X-rays through concrete.
    Cordeiro TP; Silva AX
    Radiat Prot Dosimetry; 2012 Dec; 152(4):455-62. PubMed ID: 22683619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.
    Ravisankar R; Vanasundari K; Chandrasekaran A; Rajalakshmi A; Suganya M; Vijayagopal P; Meenakshisundaram V
    Appl Radiat Isot; 2012 Apr; 70(4):699-704. PubMed ID: 22227538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AT HIGH BACKGROUND RADIATION AREAS THE RELATIONSHIP BETWEEN IN SITU INDOOR GAMMA DOSE RATES AND BUILDING MATERIALS: A CASE STUDY FROM ARIKLI VILLAGE (AYVACIK/ÇANAKKALE/TURKEY).
    Top G; Örgün Y; Karahan G; Özcan O; Horvath M; Kampfl G
    Radiat Prot Dosimetry; 2020 Jun; 188(2):246-260. PubMed ID: 31970411
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area.
    Sundal AV; Strand T
    J Environ Radioact; 2004; 77(2):175-89. PubMed ID: 15312702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring for exposures to TENORM sources in Vojvodina region.
    Todorovic N; Forkapic S; Bikit I; Mrdja D; Veskovic M; Todorovic S
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):655-8. PubMed ID: 21115449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monte Carlo modeling for individual monitoring.
    Gualdrini G
    Radiat Prot Dosimetry; 2007; 125(1-4):139-44. PubMed ID: 17533157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.