These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25945311)

  • 1. An elaborate data set on human gait and the effect of mechanical perturbations.
    Moore JK; Hnat SK; van den Bogert AJ
    PeerJ; 2015; 3():e918. PubMed ID: 25945311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset of 3D gait analysis in typically developing children walking at three different speeds on an instrumented treadmill in virtual reality.
    Senden R; Marcellis R; Meijer K; Willems P; Lenssen T; Staal H; Janssen Y; Groen V; Vermeulen RJ; Witlox M
    Data Brief; 2023 Jun; 48():109142. PubMed ID: 37113500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane.
    Matjačić Z; Zadravec M; Olenšek A
    Appl Bionics Biomech; 2019; 2019():1046459. PubMed ID: 31281413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical factors that differentiate body kinematics between treadmill and overground walking.
    Jung M; Koo S
    Front Bioeng Biotechnol; 2022; 10():888691. PubMed ID: 36091453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A progressive-individualized midstance gait perturbation protocol for reactive balance assessment in stroke survivors.
    Osman HE; van den Bogert AJ; Reinthal A; Slane S; Espy D
    J Biomech; 2021 Jun; 123():110477. PubMed ID: 34020123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects.
    Ren X; Lutter C; Kebbach M; Bruhn S; Bader R; Tischer T
    BMC Geriatr; 2022 Aug; 22(1):656. PubMed ID: 35948887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sagittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum.
    van Mierlo M; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2023 May; 152():111580. PubMed ID: 37058767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset timing of treadmill belt perturbations influences stability during walking.
    Golyski PR; Vazquez E; Leestma JK; Sawicki GS
    J Biomech; 2022 Jan; 130():110800. PubMed ID: 34864443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanics dataset of healthy human walking at various speeds, step lengths and step widths.
    van der Zee TJ; Mundinger EM; Kuo AD
    Sci Data; 2022 Nov; 9(1):704. PubMed ID: 36385009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence and anti-persistence in treadmill walking.
    Kozlowska K; Latka M; West BJ
    Gait Posture; 2022 Feb; 92():36-43. PubMed ID: 34808517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed-dependent reference joint trajectory generation for robotic gait support.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Biomech; 2014 Apr; 47(6):1447-58. PubMed ID: 24529911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability-normalised walking speed: A new approach for human gait perturbation research.
    McCrum C; Willems P; Karamanidis K; Meijer K
    J Biomech; 2019 Apr; 87():48-53. PubMed ID: 30827703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of belt speed on the body's center of mass motion relative to the center of pressure during treadmill walking.
    Lu HL; Lu TW; Lin HC; Hsieh HJ; Chan WP
    Gait Posture; 2017 Jan; 51():109-115. PubMed ID: 27744249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.