BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25945364)

  • 1. Development of a portable gait rehabilitation system for home-visit rehabilitation.
    Yano H; Tanaka N; Kamibayashi K; Saitou H; Iwata H
    ScientificWorldJournal; 2015; 2015():849831. PubMed ID: 25945364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeleton for gait rehabilitation of children: Conceptual design.
    Cornejo JL; Santana JF; Salinas SA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():452-454. PubMed ID: 28813861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedded Control System for Smart Walking Assistance Device.
    Bosnak M; Skrjanc I
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):205-214. PubMed ID: 27093701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy.
    McKinney Z; Heberer K; Fowler E; Greenberg M; Nowroozi B; Grundfest W
    Stud Health Technol Inform; 2014; 196():271-7. PubMed ID: 24732521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training.
    Labruyère R; Gerber CN; Birrer-Brütsch K; Meyer-Heim A; van Hedel HJ
    Res Dev Disabil; 2013 Nov; 34(11):3906-15. PubMed ID: 24025439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rehabilitation of stroke patients with gait disturbance].
    Hayashi K; Sakaguchi S
    Brain Nerve; 2010 Nov; 62(11):1239-51. PubMed ID: 21068461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, construction and validation of a portable care system for the daily telerehabiliatation of gait.
    Giansanti D; Morelli S; Maccioni G; Brocco M
    Comput Methods Programs Biomed; 2013 Oct; 112(1):146-55. PubMed ID: 23891239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality feedback for gait improvement in patients with idiopathic senile gait disorders and patients with history of stroke.
    Baram Y; Aharon-Peretz J; Lenger R
    J Am Geriatr Soc; 2010 Jan; 58(1):191-2. PubMed ID: 20122062
    [No Abstract]   [Full Text] [Related]  

  • 11. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review.
    Federici S; Meloni F; Bracalenti M; De Filippis ML
    NeuroRehabilitation; 2015; 37(3):321-40. PubMed ID: 26529583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study.
    Conklyn D; Stough D; Novak E; Paczak S; Chemali K; Bethoux F
    Neurorehabil Neural Repair; 2010; 24(9):835-42. PubMed ID: 20643882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Arm-Swing Trajectories in Real-Time Using a Data-Driven Model for Gait Rehabilitation With Self-Selected Speed.
    Hejrati B; Merryweather AS; Abbott JJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):115-124. PubMed ID: 28816673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rectus femoris to gracilis muscle transfer with fractional lengthening of the vastus muscles: a treatment for adults with stiff knee gait.
    Namdari S; Pill SG; Makani A; Keenan MA
    Phys Ther; 2010 Feb; 90(2):261-8. PubMed ID: 20023004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MotionTherapy@Home - First results of a clinical study with a novel robotic device for automated locomotion therapy at home.
    Rupp R; Plewa H; Schuld C; Gerner HJ; Hofer EP; Knestel M
    Biomed Tech (Berl); 2011 Feb; 56(1):11-21. PubMed ID: 21080894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity-dependent reference trajectory generation for the LOPES gait training robot.
    Tufekciler N; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of electromyogram biofeedback to reduce Trendelenburg gait.
    Petrofsky JS
    Eur J Appl Physiol; 2001 Sep; 85(5):491-5. PubMed ID: 11606020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.
    Tamburella F; Scivoletto G; Molinari M
    Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments.
    Williams G; Clark R; Schache A; Fini NA; Moore L; Morris ME; McCrory PR
    J Neurotrauma; 2011 Feb; 28(2):281-7. PubMed ID: 21174634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.