These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25945650)

  • 1. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.
    Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nascent energy distribution of the Criegee intermediate CH
    Pfeifle M; Ma YT; Jasper AW; Harding LB; Hase WL; Klippenstein SJ
    J Chem Phys; 2018 May; 148(17):174306. PubMed ID: 29739207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.
    Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH
    J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO).
    Li J; Carter S; Bowman JM; Dawes R; Xie D; Guo H
    J Phys Chem Lett; 2014 Jul; 5(13):2364-9. PubMed ID: 26279560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH
    Sun C; Zhang S; Yue J; Zhang S
    J Phys Chem A; 2018 Nov; 122(44):8729-8737. PubMed ID: 30336026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis.
    Sakamoto Y; Inomata S; Hirokawa J
    J Phys Chem A; 2013 Dec; 117(48):12912-21. PubMed ID: 24200348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous infrared detection of the ICH2OO radical and Criegee intermediate CH2OO: the pressure dependence of the yield of CH2OO in the reaction CH2I + O2.
    Huang YH; Chen LW; Lee YP
    J Phys Chem Lett; 2015 Nov; 6(22):4610-5. PubMed ID: 26539815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix isolation study of the ozonolysis of 1,3- and 1,4-cyclohexadiene: identification of novel reaction pathways.
    Pinelo L; Gudmundsdottir AD; Ault BS
    J Phys Chem A; 2013 May; 117(20):4174-82. PubMed ID: 23638640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate.
    Buras ZJ; Elsamra RM; Green WH
    J Phys Chem Lett; 2014 Jul; 5(13):2224-8. PubMed ID: 26279538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)). Part II: A theoretical study.
    Nguyen TL; Winterhalter R; Moortgat G; Kanawati B; Peeters J; Vereecken L
    Phys Chem Chem Phys; 2009 Jun; 11(21):4173-83. PubMed ID: 19458819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relatively Selective Production of the Simplest Criegee Intermediate in a CH4/O2 Electric Discharge: Kinetic Analysis of a Plausible Mechanism.
    Nguyen TL; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jul; 119(28):7197-204. PubMed ID: 25405528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).
    Dawes R; Jiang B; Guo H
    J Am Chem Soc; 2015 Jan; 137(1):50-3. PubMed ID: 25470300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of Criegee intermediates formed by ozonolysis of different double bonds.
    Kalinowski J; Heinonen P; Kilpeläinen I; Räsänen M; Gerber RB
    J Phys Chem A; 2015 Mar; 119(11):2318-25. PubMed ID: 25188402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.